РЕМОНТ СУДОВЫХ МЕХАНИЗМОВ И ДЕТАЛЕЙ
Общие положения
Главной задачей технологии ремонта дизелей является восстановле- ние их эксплуатационных показателей, которые частично или полностью были утрачены вследствие изнашивания и повреждения отдельных дета- лей, сборочных единиц и механизмов. Основным техническим докумен- том, регламентирующим точность ремонта отдельных деталей механиз- мов и дизеля в целом, являются технические условия на КР. Карты дефек- тации технических условий наряду с указанием методов обнаружения дефектов и рекомендаций по восстановлению качества деталей включают сведения о браковочных и допускаемых при ремонте признаках.
Предельные отклонения на точность восстанавливаемых деталей ус- танавливают соответствующей рабочей конструкторской и технологиче- ской документацией.
Технологические процессы ремонта должны обеспечивать минималь- ную продолжительность, широкое применение комплексной механизации и автоматизации и высокое качество ремонта.
Наиболее совершенным способом восстановления работоспособности дизелей является КР в специализированных цехах судоремонтных пред- приятий. Структурная схема технологического процесса ремонта дизелей в специализированных цехах показана на рис. 3.1. Она представляет собой совокупность блоков, соответствующих отдельным технологическим опе- рациям и расположенных в такой последовательности, в которой осуще- ствляют законченный цикл ремонта дизелей.
В зависимости от характера производства и габаритных размеров ди- зелей можно использовать поточные, поточно-позиционные и поточно- бригадные методы ремонта. В современных условиях технология КР ди- зелей базируется на результатах научных исследований:
изучении износов основных деталей и прогнозировании сроков служ- бы и ресурсов работы механизмов и дизеля в целом;
изучении и практической реализации наиболее совершенных методов и способов восстановления изношенных поверхностей деталей до номи- нальных или ремонтных размеров;
совершенствовании технологии механической обработки и сборки.
Демонтажные работы
Демонтажный этап осуществляется после постановки судна в ремонт и проводится в объемах, определяемых видом ремонта судна и категорией ремонта судовых устройств.
Рис. 3.1. Общая схема ремонта дизеля
Демонтажные работы ведутся в определенной последовательности со- гласно эксплуатационной и ремонтной документации. В процессе демон- тажных работ снимаются механизмы с фундаментов и готовятся для транспортировки на склад обменного фонда. В состав демонтажных работ входят следующие основные операции:
освобождение емкостей двигателя от воды, масла и топлива; снятие ограждений с судовых механизмов;
отсоединение трубопроводов (клапаны трубопроводов должны быть закрыты, застопорены и опломбированы в закрытом положении);
разъединение муфт и полумуфт;
снятие крепежа, закрепляющего механизмы; снятие отдельных агрегатов, узлов и механизмов;
транспортировка механизмов и агрегатов на склад обменного фонда.
Демонтажные работы слабо механизированы. Основная часть этих работ выполняется вручную. Из средств механизации применяются элек- трические и механические тали, гидродомкраты, автопогрузчики.
Разборочные работы
Порядок разборки судовых машин и механизмов зависит от их типа и конструктивных особенностей. Поэтому разборку нужно выполнять, пользуясь инструкцией завода-изготовителя, соблюдая при этом общие требования. При производстве разборочных работ на судне снимаются быстроизнашивающиеся детали и узлы, транспортируются в цеха, где производят моечные работы, дефектацию и ремонт.
При агрегатном и агрегатно-узловом методах ремонта разборка меха- низмов выполняется в специальных цехах на поточных линиях. При этом используются специальные стенды, кантователи, манипуляторы и т.п.
Методы очистки и мойки
Методы и средства очистки и мойки, применяемые для удаления за- грязнений деталей судовых дизелей при ремонте, можно разделить на две группы – механические и физико-химические. Выбор каждого из них для практического использования зависит от конструктивных особенностей деталей, их материалов, природы загрязнений и других технологических факторов.
Среди механических методов очистки деталей наиболее эффективной является очистка косточковой крошкой. Косточковая крошка представля- ет собой продукт измельчения фруктовых косточек слив, абрикосов и
других фруктов. Кинетическая энергия этим частицам (диаметром 1…3 мм) сообщается пневматическими устройствами, работающими по схемам принудительной, эжекторной и верхней подачи крошки. Большим преимуществом такой очистки наряду с высокой эффективностью, явля- ются минимальные остаточные деформации очищаемых поверхностей, пригодность ее для очистки деталей из любых материалов и хорошее ка- чество очистки. В дизелеремонтных цехах для очистки деталей косточко- вой крошкой используют специальные установки.
Пневмо- и гидроабразивные способы механической очистки имеют весьма ограниченное применение в современных технологических про- цессах. Объясняется это тем, что при использовании, например, пневмо- абразивного способа требуется надежная защита обслуживающего персо- нала от воздействия абразивной пыли. Обычно применяемые аппараты обладают высоким уровнем шума, процесс очистки сопровождается вы- делением вредного для дыхания атомарного кислорода при соударении твердых абразивных частиц с очищаемым металлом и т.д.
Физико-химические методы очистки деталей при ремонте подразде- ляют на методы очистки в электролитах и органических растворах или специальных моющих жидкостях.
Сущность электролитической очистки деталей состоит в том, что очи- щаемую деталь помещают в раствор электролита, через который пропус- кают постоянный ток. В результате электролиза на очищаемой поверхно- сти интенсифицируется движение жидкости под действием выделяюще- гося газа.
В зависимости от полярности очищаемой детали различают катодную и анодную очистки.
Обычно катодная очистка является более эффективной. Однако при этом происходит наводораживание поверхностных слоев очищаемой де- тали. Наводораживание ухудшает эксплуатационные свойства деталей из- за так называемой водородной хрупкости. Для устранения вредного влия- ния водородной хрупкости ответственные детали после катодной очистки дополнительно обрабатывают с целью обезводораживания.
В практических условиях чаще используют анодную очистку, при ко- торой деталь является анодом.
Физико-химические методы очистки в органических растворах и спе- циальных жидкостях являются наиболее целесообразными в специализи- рованном ремонтном производстве, так как позволяют сравнительно про- сто механизировать и автоматизировать процесс очистки.
Различают две разновидности физико-химических методов очистки в растворах и моющих жидкостях: очистку погружением детали в раствор моющей жидкости и очистку струйным способом.
При очистке погружением детали располагают в специальных ваннах с моющей жидкостью, в качестве которой используют щелочные раство- ры и растворители. Интенсифицируют процесс очистки в этом случае до- полнительным подогревом щелочных растворов до 350–370К и возбужде- нием моющего препарата барбатером, лопастными винтами или затоп- ленными струями.
Струйный способ очистки осуществляют подачей раствора под давле- нием на очищаемую поверхность. Благодаря комплексному физико- механическому удалению загрязнений при струйном способе появляется возможность значительно сократить время очистки. В этом случае ис- пользуют менее концентрированные моющие растворы.
Большое влияние на качество и производительность струйной очистки оказывают количество подаваемой жидкости и форма струи. Наиболее часто применяют плоские и конусообразные струи, получаемые профили- рованием насадок моющей установки. Предпочтительными являются ко- нусообразные струи, поскольку обеспечивают максимальный охват очи- щаемой поверхности при достаточном давлении рабочей струи и незначи- тельном расходе жидкости.
Технологический процесс физико-химической очистки деталей вклю- чает в себя несколько операций, основными из которых являются обезжи- ривание, промывка и сушка очищаемых поверхностей.
Механизацию физико-химической очистки дизелей, сборочных еди- ниц и отдельных деталей обеспечивают в практических условиях исполь- зованием специальных моечных установок, которые проектируют и изго- тавливают в виде двух- или трехкамерных машин. В двухкамерных моеч- ных установках первая камера предназначена для очистки и обезжирива- ния деталей, а вторая – для промывки обезжиренных и очищаемых дета- лей горячей водой. В трехкамерных установках третья камера предусмот- рена для просушивания деталей горячим воздухом.
Все механизированные моечные установки разделяют на машины ту- пикового и конвейерного типа.
Особое место среди методов очистки деталей от загрязнений занимает ультразвуковой метод. В основе этого метода лежит явление кавитации, сопровождающееся сложным комплексом физических, химических, элек- трических и гидродинамических явлений. Ультразвуковой метод является универсальным процессом интенсификации очистки деталей в жидких моющих составах. При ультразвуковой очистке в моющей жидкости с помощью магнитострикционных и пьезоэлектрических преобразователей возбуждают колебания ультразвуковой частоты (20–30 кГц) и за счет вы- сокой объемной плотности энергии создают общие и местные гидродина- мические потоки. Эти потоки при определенных давлениях приводят к появлению кавитации. При разрыве пузырьков возникают ударные волны
и кумулятивные струи, которые, воздействуя на очищаемую поверхность, приводят к микро- и макроразрушениям загрязнений.
Состав моющих жидкостей устанавливают в каждом конкретном слу- чае в зависимости от материалов детали и от условий их эксплуатации.
По природе своего образования все загрязнения, подлежащие обяза- тельному удалению при ремонте, разделяют на следующие три группы:
1) продукты высокотемпературных превращений масел, топлив, рабо- чих жидкостей и т.д. (нагароотложения, лаковые отложение, смолы и осадки);
2) деструктированные (старые) лакокрасочные и другие неметалличе- ские покрытия;
3) консервирующие покрытия и материалы.
Нагароотложенияпо своей структуре могут быть плотными, рыхлы- ми и пластинчатыми. Они образуются на деталях дизелей (головках поршня, клапанах и т.д.), работающих при высоких температурах, ухуд- шают надежность работы цилиндропоршневой группы, а при достижении больших толщин приводят к необходимости ремонта. Нагарообразования отличаются высокой механической прочностью и хорошей адгезией к поверхности детали. Поэтому их относят к наиболее трудно удаляемым загрязнениям. Химико-механические свойства нагароотложений опреде- ляются сортом топлива и масла, а также условиями их образования.
Лаковые отложенияпредставляют собой результат совместного взаимодействия кислорода воздуха, высоких температур и катализации металла. Они образуются в виде тонкой и прочной пленки с гладкой по- верхностью. Лаковые отложения проявляются наиболее интенсивно при высоких, но недостаточных для сгорания масла температурах на таких деталях, как коленчатые валы, поршни (пригорание поршневых колец в канавках поршня), картеры и др. По химическому составу лаковые отло- жения отличаются от нагарообразований добавками масел и оксикислот.
Смолистые отложенияобразуются вследствие окисления полимери- зации ненасыщенных углеводородов. Они являются характерными за- грязнениями топливной системы дизелей. Внешне смолистые отложения представляют легкоплавкие вещества от темно-коричневого до черного цвета.
Осадкив виде густой липкой массы серо-коричневого или черного цвета состоят в основном из масел и воды с присадками асфальтенов, кар- бенов, а также незначительного количества золы, сажи и пыли. Осадки создают чаще всего чисто механические препятствия нормальной работе масляной и топливной системам дизелей. Так как их адгезия к металличе- ским поверхностям относительно невелика, то удаление загрязнений в виде осадков обычно затруднений не вызывает.
На выбор компонентов моющих жидкостей наибольшее влияние ока- зывает вид загрязнения и природа их образования.
В общем случае к моющим жидкостям, предназначенным для удале- ния загрязнений с металлических поверхностей, предъявляют следующие требования:
максимальной моющей способности по отношению к конкретному виду загрязнения;
минимального разрушающего действия на очищаемую поверхность и токсического воздействия на человека;
возможно большей разницы в плотностях моющей жидкости и загрязнения; пожарной безопасности.
Для очистки деталей из алюминиевых и черных сплавов применяют щелочные растворы с определенной массовой долей (%) в воде (табл. 3.1).
Источник
Тема 7. Техническое обслуживание и ремонт судовых механизмов и оборудования
В пределах пароходства техническую эксплуатацию флота организует служба судового хозяйства (ССХ). Среди ее многообразных функций важное место занимают вопросы организации технического использования и технического обслуживания СЭУ. Техническое использование судовых дизельных установок. Техническое использование предусматривает: организацию труда машинной команды; выбор оптимальных режимов работы СЭУ; рациональное использование топлива и смазочного масла. Организация труда машинной команды строится с учетом положений Устава службы на судах морского флота.
Главным лицом, ответственным за правильную организацию технической эксплуатации судна в целом, является капитан. Заместителем капитана по технической части является старший механик. Он составляет расписание по вахтам и заведованиям судомеханической части, планирует и организует труд машинной команды.
Под организацией труда на судне подразумевается рациональное разделение функций членов машинной команды по технической эксплуатации установки.
В условиях современного судна эти функции разделяются на контроль за процессами, протекающими в установке, и управление ими, и на ремонт судового оборудования.
Первую функцию выполняют в процессе несения вахт, а вторую — в процессе судовых работ.
В настоящее время трудозатраты на техническую эксплуатацию в условиях судна в среднем по флоту составляют (%): на контроль—18, на управление—19, на профилактику и ремонт—63.
Профилактические и ремонтные работы составляют основную часть трудозатрат экипажа, что объясняется необходимостью значительного применения ручного труда.
Путями для снижения трудоемкости судовых работ являются: внедрение средств механизации, уменьшение объема профилактических и ремонтных работ, выполняемых силами судового экипажа, комплектация механизмов в необходимом количестве сменно-запасными деталями, дальнейшее повышение надежности судового оборудования.
Механизация трудоемких процессов предусматривает, наряду с применением механизированного инструмента по очистке и окраске, использование механизированных приспособлений для монтажных и демонтажных работ на главных двигателях, вспомогательных механизмах и судовых устройствах, химических способов очистки цистерн и теплообменных аппаратов и др.
Работы по техническому обслуживанию судового оборудования наряду с судовым экипажем осуществляют береговые ремонтные организации. Поэтому ССХ при составлении плана-графика профилактических и ремонтных работ по судну планирует береговым организациям работы, выполнение которых требует специального оборудования и квалификации исполнителей. Судовая команда в условиях плавания должна выполнять комплекс профилактических работ, сроки исполнения которых не совпадают с периодичностью заводского ремонта.
Значительному упрощению ремонтных работ в судовых условиях способствует наличие необходимого комплекта сменных деталей.
Дальнейшего снижения трудоемкости профилактических и ремонтных работ достигают проектированием и изготовлением судовой техники, обладающей высокой надежностью, большим моторесурсом, удобством в эксплуатации и ремонте.
Существуют различные формы организации профилактических и ремонтных работ, о чем подробнее будет изложено далее.
Выбор оптимальных режимов эксплуатации судовых дизелей, обеспечивающий надежную и экономичную их работу, является первостепенной задачей технического использования. Это особенно важно в связи с существующей в настоящее время тенденцией повышения тепловой и механической напряженности судовых дизелей.
Важную роль в обеспечении оптимальных условий эксплуатации энергетической установки играет контроль, поддержание и регулирование заданного режима работы. Наиболее успешно эта задача решается в условиях комплексной автоматизации дизельной установки. Однако даже частичная автоматизация процессов, протекающих в двигателе и обслуживающих его системах, и использование аварийнопредупредительной сигнализации значительно способствуют повышению эффективности поддержания режима эксплуатации установки.
Затраты на оборудование и ремонт элементов системы топливоподготовки (отстойных цистерн, подогревателей, сепараторов, фильтров). Установлено расчетами и подтверждено практикой, что расходы на дополнительное оборудование систем топливоподготовки окупаются, как правило, в течение первого года эксплуатации судна на тяжелом топливе.
В процессе эксплуатации детали судовых машин и механизмов подвержены естественному износу, что приводит к изменению техникоэксплуатационных показателей судового оборудования. Поддержание и восстановление этих показателей являются задачей технического обслуживания, которую решают путем проведения ремонтов, профилактических вскрытии, осмотров и ревизий судовых механизмов, моточисток, наладок, регулировок, своевременного обеспечения материалами, сменными деталями, инструментом, средствами механизации работ в судовых условиях.
Ремонт судовой техники в зависимости от требуемых для его выполнения оборудования, оснастки и квалификации исполнителей можно разделить на два вида: промышленный и непромышленный.
Промышленный ремонт может быть выполнен только в заводских условиях с выводом судна из эксплуатации, непромышленный может проводиться в судовых условиях в процессе эксплуатации.
Четкое разделение судовых работ на промышленные и непромышленные позволяет по каждому судну установить номенклатуру ремонтных работ, для выполнения которых требуется заводское оборудование. Определение необходимой периодичности этих работ позволяет установить рациональные сроки работы судна без заводского ремонта.
В настоящее время разработаны теоретические основы организации планово-предупредительного ремонта (ППР), позволяющие обоснованно устанавливать его периодичность.
Основные выводы этой теории состоят в следующем:
· оптимальная периодичность ППР позволяет без дополнительных затрат труда и средств значительно увеличить эксплуатационный период машин, механизмов и устройств. Примерная оптимальная периодичность составляет 0,4—0,6 средней продолжительности безотказной работы;
· ППР целесообразно применять только для узлов и деталей, работающих на износ (например, деталей ЦПГ, подшипников, движущихся деталей насосов и т. д.);
· ППР должен проводиться через строго определенные промежутки времени работы механизма независимо от его технического состояния;
· для судового оборудования с различной степенью надежности одинаковая периодичность ППР нецелесообразна;
· ППР не исключает внезапных выходов из строя элементов судовой техники, а только уменьшает их возможность.
Основным документом, определяющим организацию технического обслуживания, является план-график работ, выполняемых в условиях эксплуатации. План-график определяет сроки проведения осмотровопрофилактических работ на время эксплуатации судна без вывода на заводской ремонт; его также используют для оперативного планирования работ на месяц, рейс, стоянку.
Планы-графики для механической части составляют по заведованиям II, III, IV механиков, а по электромеханической части — по заведованию электромеханика.
В план-график заносят судовое оборудование, подлежащее ремонту в процессе эксплуатации. Основанием для вскрытия механизмов являются нормативные документы.
При составлении плана-графика должны быть учтены обстоятельства, влияющие на формы технического обслуживания: продолжительность рейсов и стоянок, порты заходов и наличие в них баз технического обслуживания и другие особенности эксплуатации.
Учет перечисленных обстоятельств позволяет при определении исполнителей работ в плане-графике сочетать существующие формы технического обслуживания: штатный судовой экипаж, судовые ремонтные бригады (СРБ), береговые ремонтные бригады (БРБ), периодически направляемые в рейсы, и береговые базы технического обслуживания (БТО). Учитывается также существенное уменьшение доли работ, производимых судовыми экипажами, за счет развития и совершенствования БТО.
В правой части плана-графика делают отметку о фактической трудоемкости выполненных за каждый месяц работ. Это позволяет проконтролировать выполнение работ, а кроме того, при планировании технического обслуживания на следующий цикл эксплуатации заново откорректировать плановую трудоемкость по фактическим затратам.
При составлении планов-графиков определяют перечень сменного оборудования, сменных деталей, полуфабрикатов, материалов, необходимого инструмента и оборудования для выполнения запланированных работ. Потребность в оборудовании позволяет правильно решить вопрос о распределении работ между исполнителями.
В первую очередь выделяют работы, выполняемые судовым экипажем.
Для этого предварительно определяют бюджет рабочего времени экипажа для профилактических и ремонтных работ и принимают во внимание положения Устава службы на судах ММФ и Правил технической эксплуатации, определяющие обязанности членов судовой команды по выполнению судовых работ. Кроме того, судовой экипаж выполняет работы по наименее надежному оборудованию с минимальной периодичностью проведения профилактических осмотров.
Затем определяют работы, поручаемые БТО во время стоянок судна под грузовыми операциями и в доке на весь эксплуатационный период. БТО выполняют работы, требующие промышленного оборудования и наличия специалистов, отсутствующих в составе судового экипажа.
Оставшиеся работы выполняет СРБ или, при отсутствии таковой, БРБ, временно направляемая на судно, выходящее в рейс.
Для выполнения работ силами БТО и БРБ судовая администрация должна представлять в ССХ годовой план технического обслуживания этими подразделениями, составленный на основании плана-графика.
Необходимые материалы, сменные детали и средства механизации для выполнения работ поставляются на судно по заявкам его администрации, подготовленным на основании плана-графика и представленным в ССХ.
Источник