Термопреобразователи сопротивления устройство ремонт

Pereosnastka.ru

Обработка дерева и металла

Термоэлектрические преобразователи, поступающие в ремонт после разборки и очистки, тщательно осматривают, определяя состояние термоэлектродов, рабочего конца, защитной трубки и зажимов контактной головки. При осмотре электродов из неблагородных металлов проверяют, нет ли в них трещин, обрывов, которые могут появляться в условиях воздействия повышенных температур. При обнаружении дефектов термоэлектроды заменяют новыми, которые могут быть изготовлены из термоэлектродной проволоки. Последнюю нарезают на куски необходимой длины, скручивают между собой на рабочем конце и сваривают. Сваривать электроды можно в пламени электрической дуги или газовой горелки до появления шарика расплавленного металла на конце скрутки. Пластинчатые термоэлектроды сваривают обычно внахлестку с помощью аппарата для контактной сварки.

Рис. 1. Схема отжига термоэлектродов термопары

Электроды термопар из благородных металлов помимо чистки подвергают отжигу, так как при длительной эксплуатации они загрязняются окислами металлов и науглероживаются. Отжиг электродов осуществляют электрическим током 10,5 — 11 А в течение 3 — 4 ч. Схема отжига показана на рис. 1.

Электроды отжигаемой термопары присоединяют через реостат и амперметр к токоподводящим проводам, растягивая свободные концы в разные стороны так, чтобы рабочий конец стал ниже их на 200 — 250 мм. Включив ток, на верхние концы электродов наносят буру, которая, плавясь, каплями стекает по электродам, очищая их. Закончив очистку, электроды промьюают в дистиллированной воде. Чистку электродов также можно выполнять в крепком растворе соляной или азотной кислоты с последующей промывкой водой и сушкой. После ремонта на электроды надевают изоляционные трубки и присоединяют клеммную панель. На рабочий конец термопары надевают изоляционный наконечник и вставляют собранную термопару в защитную арматуру. После ремонта необходимо мегомметром измерить сопротивление электрической изоляции между термоэлектродами и корпусом, а также между отдельными термопарами двойных и многозонных термопар. Сопротивление изоляции должно быть не менее: 5 МОм — при температуре (20 ± 5) °С и относительной влажности до 80% для всех термопар; 0,5 МОм — при температуре 35 °С и относительной влажности (95 ± 3) % для влаго- и водозащищенных термопар.

Читайте также:  Моя однушка после ремонта

Термопреобразователи сопротивлений, поступившие в ремонт, подлежат разборке и внешнему осмотру, при котором устанавливают видимые повреждения защитной арматуры, чувствительного элемента, головки и зажимов. Поврежденный чувствительный элемент медного термопреобразователя подлежит замене новым или же его изготовляют в мастерской. Материалом для намотки может служить провод марки ПЭШО или ПЭС диаметром 0,1 мм. Провод равномерно наматывают на каркас и каждый слой покрывают бакелитовым или глифталевым лаком. Готовый элемент сушат при температуре 150 °С в течение 6 ч. После охлаждения выполняют проверку, подгонку и сравнение характеристик датчика с градуировочными данными. При ремонте платинового термопреобразователя сопротивления обрыв проволоки чувствительного элемента устраняют сваркой на небольшой вольтовой дуге, после чего элемент собирают заново. После ремонта производят проверку сопротивления чувствительного элемента. Проверка, подгонка и сравнение характеристик отремонтированного термопреобразователя с градуировочными данными должны осуществляться с помощью одинарного или двойного моста класса не ниже 0,05.

Источник

Термопреобразователи сопротивления. Устройство, характеристики, виды и типы, схемы термопреобразователей сопротивления ТСП, ТСМ, ТСПУ, ТСМУ.

Платиновые термопреобразователи сопротивления (ТСП) могут иметь следующие сопротивления при 0 °С: 1, 5, 10, 50, 100 и 500 Ом, и поэтому имеют следующее обозначение номинальных статических характеристик 1П, 5П, 10П, 50П, 100П и 500П. ТСП используются для измерения температуры в интервале (-260. 1100) °С и являются наиболее распространенным типом термопреобразователей сопротивления. При выборе ТСП следует использовать общий принцип — низкоомные ТС необходимо применять для измерения высоких температур, а высокоомные — для измерения низких температур.

Кроме того, при использовании высокоомных ТСП влияние изменения сопротивления внешней линии сказывается меньше, чем при использовании низкоомных. Недостатком платиновых ТС является нелинейность статической характеристики, особенно в области высоких и отрицательных температур, возможность загрязнения платины при высоких температурах, подверженность воздействию восстановительных и агрессивных газов. В интервале температур (0. 600) °С зависимость сопротивления от температуры описывается нелинейным выражением

Rt = R0(1 + At + Bt 2 )

Обычно в таблицах задаются значения Wt = Rt / R0 в зависимости от температуры. В этом случае номинальные статические характеристики преобразования рассчитываются по (2) и даны в табл. 2. предыдущей статьи.

Для изготовления платиновых термопреобразователей сопротивления используется проволока диаметром от 0,05 до 0,1 мм (для использования в температурном интервале до 750 °С) и диаметром (0,2. 0,5) мм для измерения температур до 1100 °С. Типовой конструкцией чувствительного элемента является конструкция, представленная на рис. 2.

Рис. 2. Чувствительный элемент платинового термопреобразователя :

1 — платиновые спирали; 2 — керамический каркас; 3 — изоляционный порошок; 4— выводы; 5 — глазурь; 6 — металлическая оболочка

Чувствительный элемент состоит из соединенных последовательно двух платиновых спиралей 1, расположенных в каналах керамического каркаса 2. Каналы каркаса со спиралями заполняются порошком 3 (обычно это оксид магния), который служит изолятором и улучшает тепловой контакт проволоки с каркасом. К концам спиралей припаяны короткие выводы 4 из платиновой или иридиевой проволоки, к которым затем припаиваются изолированные выводные проводники. Торцы керамического каркаса герметизируются специальной глазурью 5. Каркас помещается в тонкостенную металлическую оболочку 6, которая также заполняется порошком и закрывается пробкой, через которую пропущены выводы. Каркас может иметь четыре канала для размещения двух спиралей (двойные ТС). Такая конструкция обеспечивает хорошую герметичность чувствительного элемента, незначительное механическое напряжение платиновой проволоки, достаточную прочность и вибростойкость. Длина платиновых чувствительных элементов обычно равна 50. 100 мм при диаметре 3. 6 мм. Все свободное пространство заполнено изолирующим порошком. Предельные погрешности ТСП приведены в табл. 1. предыдущей статьи

Медные термопреобразователи сопротивления (ТСМ) применяются для длительного измерения температуры в интервале от -200 до 200 °С. К достоинствам меди как материала для чувствительных элементов следует отнести дешевизну, возможность получения в чистом виде, хорошую технологичность, линейность зависимости сопротивления Rt от температуры t. Статическая характеристика преобразования у ТСМ описывается уравнением

Rt = R0(1 + α * t), где α — температурный коэффициент, равный

0,00428 °С -1 , R0 — сопротивление ТСМ при 0 °С.

Линейность статической характеристики является достоинством меди, а ее недостатком — интенсивная окисляемость, что ограничивает диапазон применения ТСМ температурой 200 °С и требует покрытия изоляцией проволоки чувствительного элемента. Проволока может покрываться либо эмалью, либо кремнийорганической изоляцией. Чувствительный элемент медного термопреобразователя сопротивления состоит из медной изолированной проволоки диаметром 0,1 мм, намотанной на каркас (рис. 3, а).

Рис. 3. Чувствительные элементы медных термопреобразователей :

а — с каркасной намоткой: 1 — намотка; 2 — каркас; 3 — слой лака; 4 — защитная оболочка; 5 — выводы; б — с бескаркасной намоткой: 1 — намотка; 2 — фторопластовая оболочка; 3 — защитная оболочка; 4 — изолирующий порошок; 5 — выводы

Намотка должна быть безындуктивной, т.е. индуктивное сопротивление чувствительного элемента (ЧЭ) термопреобразователя сопротивления должно быть минимальным. Это связано с тем, что ЧЭ содержит большое число витков медного провода и при обычной намотке будет иметь значительную индуктивность. Поскольку вторичные приборы для ТС (автоматические мосты) имеют измерительные схемы, питаемые электрическим переменным током, индуктивное сопротивление одного из плеч (в данном случае ЧЭ) будет влиять на режим уравновешивания. Для обеспечения безындуктивности обычно выполняется бифилярная намотка — намотка вдвое сложенным проводом. Поверхность намотки покрывается слоем лака. К концам проволоки припаиваются медные выводы диаметром 1. 1,5 мм. ЧЭ помещается в металлическую защитную оболочку, засыпанную изолирующим порошком и герметизированную. Чувствительные элементы могут быть бескаркасными (рис. 3, б). Они изготавливаются из медной проволоки диаметром 0,08 мм безындуктивной намоткой. Отдельные слои скреплены лаком, а затем весь ЧЭ обернут фторопластовой пленкой. ЧЭ помещается в тонкостенную металлическую оболочку, которая засыпается изолирующим порошком и герметизируется.

Недостатком меди, как материала для термопреобразователя сопротивления, является также малое удельное сопротивление, так как для изготовления ЧЭ при этом требуется много проволоки, что увеличивает размеры ЧЭ и ухудшает динамические свойства ТС.

По ГОСТ Р50353-92 медные термопреобразователи сопротивления (сокращенное обозначение ТСМ) должны иметь номинальное сопротивление при 0 °С, равное 10, 50, 100 Ом, при этом номинальные (т.е. идеальные) статические характеристики преобразования (НСХ) условно обозначаются ЮМ, 50М, 100М (таким образом, в обозначении НСХ цифра — это сопротивление термопреобразователя сопротивления при 0 °С в омах, буква — обозначение материала — медь). Для всех разновидностей ТСМ аналитическое выражение НСХ одинаково:

причем коэффициент α = 0,00428 (1/°С) одинаков для всех ТСМ (по стандартам МЭК он может быть равным 0,00426 1/°С). Различие НСХ только в значении R0. Медные ТС обычно выпускаются с классами допуска В и С. Предельные значения отклонений приведены в табл. 1. предыдущей статьи

В общем виде чувствительность для термопреобразователя сопротивления определяется выражением

при Δt стремящемся к нулю

где d — символ производной.

По табл. 1 погрешность термопреобразователя сопротивления выражается в градусах (Δt). Она может быть выражена в единицах сопротивления ΔR, связанных с Δt (в градусах) через коэффициент преобразования:

Арматура ТС бывает двух исполнений: с головкой и без нее. В головке ТС имеются контакты, к которым подсоединяются выводные проводники от ЧЭ и сальниковый ввод для линии связи со вторичным устройством. Внутреннее устройство ТС с головкой представлено на рис. 4.

Чувствительные элементы помещаются в защитную арматуру, подобную изображенной на рис. 4.

Рис. 4. Устройство термопреобразователя сопротивления с головкой и без крепежных деталей :

1 — чувствительный элемент; 2 — защитная арматура; 3 — выводы; 4 — изоляция; 5 — герметик; 6 — головка; 7 — клеммная сборка; 8 — зажимы; 9 — жилы кабеля; 10 — кабель; 11 — гайка

Выводные (от ЧЭ) проводники пропускаются через каналы керамического изолятора, все свободное пространство внутри арматуры засыпается керамическим порошком. В верхней части арматура герметизируется. В головке располагается сборка зажимов, к которой подсоединяются выводные проводники чувствительного элемента и провода внешней линии. На внешней стороне арматуры может располагаться подвижный или неподвижный штуцер. На контролируемом объекте закрепляется защитная гильза, внутри которой закрепляется арматура термопреобразователя сопротивления.

От чувствительного элемента к контактной головке могут подходить два, три или четыре выводных проводника. Это связано с различными схемами подключения ЧЭ к вторичным устройствам (двух-, трех- или четырехпроводные схемы). Часть применяемых схем выводов приведена на рис. 5.

Схема термопреобразователя сопротивления без головки и крепежных устройств с четырьмя выводами от ТС изображена на рис. 6. У таких ТС выводы от чувствительного элемента после пробки, герметизирующей свободный конец защитной арматуры, выпускаются в виде отдельных изолированных проводов большой протяженности. На рис. 6 изображен пример, когда от чувствительного элемента отходят четыре вывода.

Рис 5. Применяемые схемы выводов от чувствительного элемента термопреобразователя :

а,6 — четырехпроводная; в, д — двухпроводная; г — трехпроводная (схемы б,д — двойной ТС)

Рис. 6. Схема термопреобразователя сопротивления без головки с четырьмя выводами :

а — внешний вид; б — схема видов

Рис. 7. Структурная схема измерительного преобразователя температуры SITRANS TK-L

Проволочные термопреобразователи сопротивления имеют стабильную НСХ, однако обладают сравнительно большими размерами и достаточно большой тепловой инерцией. Этих недостатков лишены тонкопленочные ТС, которые работают в интервале (-50. 300) °С, классов А, В, С и имеют НСХ 50М(П), 100М(П), 500М(П), 1000М(П).

Структурная схема измерительного преобразователя температуры SITRANS TK-L , размещаемого в головке термопреобразователя сопротивления ТС (Pt100) представлена на рис. 7. Последний к преобразователю подключен по четырехпроводной схеме, возможны варианты двухпроводного и трехпроводного подключения. Сигнал от термопреобразователя сопротивления, усиленный в усилителе У, поступает на аналого- цифровой преобразователь АЦП, а затем на микропроцессор МП и цифроаналоговый преобразователь ЦАП. В микропроцессоре производится усреднение измеряемого сигнала, линеаризация, пересчет в соответствии с заданным диапазоном и пр. По двухпроводной линии передается выходной сигнал 4. 20 мА и питание от внешнего источника. Диапазон измерения преобразователя составляет -200. 850 °С при погрешности ±0,1 % диапазона измерения. Фирма Siemens помимо этих преобразователей выпускает SITRANS ТЗК-РА, SITRANS ТК/ТК-Н, SITRANS TF. Первый тип преобразователей имеет цифровой интерфейс PROFIBUS-PA, два других при выходном сигнале 4. 20 мА работают с HART модемами, последний имеет, кроме того, встроенный цифровой индикатор.

Комплекты термопреобразователей. Платиновые термопреобразователи сопротивления являются основными средствами измерения температур в системах контроля теплоснабжения, где малые разности температур (3. 4) °С должны измеряться с погрешность (1. 2) %. Обычно для учета теплоты подбирается комплект из двух платиновых термопреобразователей сопротивления (например, комплект КТПТР), обладающих близкими погрешностями одного знака, это позволяет обеспечить высокую точность измерения разности температур. В табл. 1 приведены пределы допускаемых погрешностей измерения разности температур комплектами платиновых термопреобразователей классов 1 и 2, которые образованы соответственно термопреобразователями классов А и В.

Полупроводниковые термопреобразователи сопротивления обычно называются термисторами и используются для измерения температур в интервале (-100. 300) °С. Их достоинства — высокое значение ТКС (на порядок больше, чем у металлов), малая тепловая инерция и высокое номинальное сопротивление. Недостатками являются нелинейность номинальной статической характеристики, невзаимозаменяемость из-за большого разброса номинального сопротивления и ТКС, нестабильность статической характеристики. В связи с этими недостатками полупроводниковые термопреобразователи обычно используются в цепях температурной компенсации и сигнализации, где не предъявляются высокие требования к точности измерения температуры.

Таким образом, термопреобразователи сопротивления могут применяться для измерения температуры только в сочетании с другими средствами измерений. Так, измерительный комплект может состоять из ТС, вторичного прибора (например, РП160-12) и соединительной линии между ними. Погрешность измерения температуры в этом случае определяется погрешностью всех этих средств с учетом возможной методической погрешности.

Источник

Оцените статью