РЕМОНТИРУЕМ СТРОЧНУЮ РАЗВЕРТКУ.
#1 от 12/03/2002 00:59 | цитата |
Рискну поместить сюда свой перл по поводу сомнительных советов в разных форумах о «методиках резонансных проверок трансформаторов», отвлекающих массы ремонтников в неактуальную область призрачных способов достижения результатов в аспекте ремонта силовых блоков имеющих в наличии различного типа импульсные трансформаторы. Этот непрактичный совет дают на разных форумах спецы по резонансным явлениям, для проверки трансформаторов и ТДКСов. Хотелось бы узнать КТО, достоверно, проверил таким методом хоть один трансформатор? Резонансная частота в данном случае функция проволоки намотанной на сердечник. Количество витков, диаметр провода, свойства материала сердечника, высота зазора определяюще воздействуют на частоту резонанса. Кто занимался радиотехникой, должен знать, что много лет тому назад методом закорачивания части витков катушки, магнитной антенны (аналог трансформатора), резонанс смещали выше по частоте без особого ущерба для работы в «резонансе». Витковые замыкания не сказываются на отсутствии резонанса, а только повышает его частоту, снижая добротность. Форма импульсов обмотками, даже закороченными, не искажается (при синусоидальном сигнале, а меандр применять вообще не разумно) На форму импульса влияет только насыщение сердечника, но тогда о каком резонансе речь, и какой мощности должен быть генератор? К тому же по ряду причин резонансов может быть несколько. Так что можно только сожалеть о напрасно потраченном времени, на безрезультатную проверку. Теперь о главном: Необходимо учитывать следующее — трансформаторы импульсных блоков питания выходят из строя, чаще всего, по причине разогрева первичной обмотки при коротких замыканиях силовых ключей. Это особенно часто происходит в небольших по размеру и намотанных тонким проводом, БП современных видаков. Провод за короткое время сильно разогревается, изоляция разрушается, в результате возникают витковые замыкания, снижающие добротность, что нарушает режим работы автогенератора в простых схемах. В схемах с внешним возбуждением срабатывают различные защиты, в том числе и по току, блокируется работа БП что защищает микросхемы и силовые ключи. Следует считать, что повышенное напряжение на вторичках и работа в «разнос» показатель качества трансформатора и осутствия витковых КЗ.. — Боле сложная причина — «мерцающее КЗ» это связано с электромеханическими явлениями, в частности магнитострикционный эффект перетирает витки обмоток не «натянутых» или не закрепленных, по требованиям технологии намотки. Неравномерный нагрев разных обмоток и их расширение, создает условия для локального разрушения изоляции. Тогда силовые ключи выходят из строя внезапно, и как бы безпричинно. Такие проблемы требуют специальных методов диагностики. Большое количество вариантов приборов для проверки на КЗ обмоток проблему не решают и в практике ремонта не прижились. Наиболее ДОСТОВЕРНЫМ способом, в «домашних» условиях который дает 100 % результат представляется подключение низковольтной обмотки трансформатора импульсного БП, или накальной обмотки ТДКС к выводам накала работающего телевизора. Напряжение на выходе ТДКС контролируется на искру в разрядном промежутке. СТАТЬИ, ОПИСАНИЕ, ПРИНЦИП РАБОТЫ СТРОЧНОЙ РАЗВЕРТКИ И ТДКС. Информация по «STROCHNIK» предоставлена MICHAIL, Информация по СР с журналов РЭТ предоставленна naoh, Источник Регулировка и ремонт цветных телевизоров УЛПЦТ(И)-59/61-11 (стр. 3 )
На большинство электродов кинескопа напряжения поступают из цепей и каскадов телевизора, режим которых стабилизирован. В то же время напряжение и ток накала таких важных электродов, как подогреватели, не стабилизированы. Поэтому колебания напряжения питающей сети оказывают существенное влияние на работу кинескопа и срок его службы. Срок службы кинескопов практически определяется долговечностью их катодов, а долговечность катодов в свою очередь в сильной степени зависит от их температурного режима. Колебания температуры нагрева влекут за собой изменения эмиссионных свойств катода и могут, следовательно, явиться причиной изменения яркости изображения. В начале эксплуатации кинескопа требуемый ток луча обеспечивается эмиссией электронов с поверхностных слоев катода, что может быть достигнуто даже при несколько пониженной температуре катода и при недокале подогревателя (напряжение накала не менее 5,7 В). По мере ухудшения эмиссионных свойств катода в процессе эксплуатации, недокал подогревателя, происходящий из-за колебания напряжения питающей сети, является частой причиной пониженной яркости изображения. И, наконец, в конце срока службы даже при нормальном режиме подогревателя и катода эмиссии электронов с поверхностных слоев катода оказывается недостаточно для получения нормального тока луча и приемлемой яркости изображения. В этот период эксплуатации кинескопа температуру катода за счет увеличения напряжения и тока накала подогревателя следует повысить с тем, чтобы обеспечить эмиссию электронов из глубинных слоев катода. Однако срок службы подогревателя при увеличенном напряжении накала (6,9 В и более) резко сокращается и полностью использовать эмиссию электронов из глубинных слоев катода не удается. Как показывает опыт, сокращение срока службы подогревателя происходит в основном из-за разрушения нити накала во время бросков тока при включении телевизора. В течение нескольких секунд после включения ток накала оказывается сильно увеличенным из-за того,- что сопротивление у холодного подогревателя значительно ниже, чем у разогретого. При этом достигается быстрый разогрев катода. В этих условиях срок службы подогревателя можно существенно увеличить, если уменьшить или совсем устранить резкое возрастание тока накала, возникающее при включении телевизора, и удлинить время разогрева катода. При быстром разогреве катода из-за сильного перепада температур внутри его материала могут возникать механические деформации, приводящие к осыпанию частиц поверхностного слоя катода. Эти частицы оседают на изоляторах пушек и могут явиться причиной возникновения нежелательных междуэлектродных проводимостей и замыканий. Вредное влияние бросков тока в цепи подогревателя кинескопа можно значительно уменьшить, если последовательно с ним включить бареттер. Бареттер представляет собой нелинейное сопротивление, значение которого возрастет при увеличении приложенного к нему напряжения. В силу этого свойства ток через бареттер поддерживается приблизительно на одном и том же уровне при колебаниях напряжения в некоторых, установленных для каждого конкретного типа бареттера, пределах. Тепловая инерция бареттера значительно ниже тепловой инерции подогревателя катода кинескопа, и время, в течение которого ток накала увеличен, резко сокращается. Для стабилизации тока накала кинескопов 59ЛКЗЦ и 61ЛКЗЦ можно применять бареттеры типа 1Б5-9 и 0.85Б5-12. Рис. 8. Включение бареттера в цепь накала цветного кинескопа Вместо бареттеров можно использовать двенадцати-вольтовые электрические лампочки накаливания, применяемые в автомобилях — 12 В на 20 или 25 Вт. Сопротивление нити этих лампочек хотя и в меньшей степени, чем у бареттеров, носит тоже нелинейный характер. Поэтому при помощи этих лампочек можно также ограничить броски тока через подогреватель и осуществить некоторую стабилизацию тока накала. Если вместо бареттера в цепь подогревателя кинескопа с увеличенным напряжением накала включить проволочный резистор, то с его помощью тоже можно ограничить бросок тока через холодную нить накала и продлить тем самым срок службы кинескопа. Однако в этом случае стабилизации тока накала не обеспечивается и яркость изображения будет изменяться при колебаниях напряжения питающей сети. В качестве ограничительного резистора следует использовать переменный резистор типа ПП10-10 Ом. Это даст возможность регулировать ток накала подогревателя и устанавливать его для старых кинескопов таким, при котором обеспечивается требуемая яркость свечения растра, образованного тем электронным лучом, катод которого имеет заметную потерю эмиссии. Для того чтобы иметь возможность включить в цепь подогревателя кинескопа бареттер или ограничительный резистор, нужно увеличить напряжение, питающее подогреватели. В телевизорах УЛПЦТ-51/61-П и их модификациях для этой цели можно намотать дополнительную обмотку на сетевом трансформаторе. Из-за встречного включения обмоток накал кинескопа может отсутствовать. Чтобы этого избежать, надо поменять места включения выводов дополнительной обмотки. При сильной потере эмиссии одним из катодов кинескопа в цепь накала можно включить бареттеры 0.85Б5-12 иб,425Б5-12, соединенные параллельно. Можно также включить один бареттер 0,85Б5-12 или 1Б5-9, за-шунтированный переменным резистором ППЗ-47 Ом и проволочным резистором 12 Ом, соединенными последовательно (R2 и R3 на рис. 8). При помощи переменного резистора можно изменять накал кинескопа в зависимости от степени потери эмиссии катодами. Эксплуатацию нового кинескопа полезно начинать, включив в цепь его накала только бареттер 0.85Б5-12. Благодаря этому удастся существенно продлить срок службы кинескопа. Большинство неисправностей кинескопа можно обнаружить после внешнего осмотра и измерения напряжений на гнездах его панели. Внешний осмотр дает возможность установить имеется ли накал подогревателей, каково качество контактов панели кинескопа, надежно ли соединение кабелей высокого напряжения с выводом на колбе и с контактом 9 фокусирующего электрода на панели кинескопа, не пробит ли разрядник в цепи этого электрода. Рис. 9. Схема подачи напряжений на модуляторы и ускоряющие электроды кинескопа Накал подогревателей может отсутствовать не только из-за плохого контакта в гнездах 1 и 14 панели кинескопа, но и из-за нарушения вакуума при возникновении трещин в стеклянном цоколе вследствие механического иогиба выводов электродов в результате неосторожного подключения панели. Измеряя напряжения, следует соблюдать правила техники безопасности. Главное требование этих правил — подключать приборы только при выключенном телевизоре. Ряд неисправностей кинескопа удается обнаружить, измерив напряжения на гнездах надетой и снятой панели кинескопа. При исправном кинескопе напряжения на гнездах как надетой, так и снятой панели будут такими, как на рис. 7. Неисправности, связанные с возникновением между электрод ной проводимости или замыканиями в кинескопе, приводят к тому, что некоторые напряжения на гнездах надетой панели будут отличаться от приведенных на рис. 7. Недостаточную яркость или отсутствие свечения растра в одном из первичных цветов можно обнаружить, поочередно выключая лучи тумблерами 7В1 — 7ВЗ (или октальным переключателем), находящимися на блоке цветности (рис. 9). Такой дефект возникает из-за неисправностей кинескопа — потери эмиссии или обрыва вывода катода, а также из-за возникновения проводимости или замыкания между модулятором и ускоряющим электродом одного из электронных прожекторов. Обнаружить проводимость или замыкание между модулятором и ускоряющим электродом можно при помощи ампервольтомметра, измеряющего напряжения 300 — 1000 В, если подключить его к разомкнутым контактам одного из соединителей Ш22 — Ш24. При наличии такой проводимости или замыкания после включения телевизора стрелка прибора отклонится, а при отсутствии этого дефекта останется на нулевой отметке. Сопротивления цепей, подключенных к модулятору и ускоряющему электроду, различны: 270 кОм и 4,7 МОм соответственно. Поэтому при возникновении проводимости или замыкания между этими электродами напряжение на ускоряющем электроде сильно уменьшается. В результате электронный прожектор с этими электродами запирается и свечение растра в одном из первичных цветов понижается или пропадает совсем. Иногда восстановить прежний уровень яркости можно, увеличив напряжение на ускоряющем электроде электронного прожектора с пониженной эмиссией катода одним из переменных резисторов (9R71 — 9R73). Большая яркость свечения растра одним из первичных цветов может наблюдаться из-за возникновения проводимости или замыкания между катодом и модулятором одного из электронных прожекторов. Такая проводимость или замыкание часто возникает лишь при нагреве катода и не обнаруживается омметром на отключенном кинескопе. Все это происходит из-за попадания между указанными электродами механических частиц (материала катодного покрытия, акводага и т. п.) и из-за деформации этих электродов при нагреве в процессе длительной эксплуатации кинескопа. Распространенной неисправностью является отсутствие свечейия экрана в одном из первичных цветов (красном, синем или зеленом). В таких случаях черно-белое изображение оказывается окрашенным соответственно в сине-зеленый, желтый или фиолетовый цвет. Такие же нарушения возникают при выходе из строя одного электронного прожектора кинескопа или запирании его при неисправностях в канале цветности и в цепях питания ускоряющего электрода. Для того чтобы в таких случаях определить, где кроется неисправность, можно поменять места подключения модуляторов к соединителям неработающего и одного из работающих электронных прожекторов Ш22, Ш23 или Ш24 на блоке цветности (рис. 9). Если после такого переключения отсутствовавший цвет появится, а другой цвет исчезнет, то неисправность возникла в том видеоусилителе, при подключении к которому цвет пропадает. Если после переключения по-прежнему отсутствует тот же самый цвет, то видеоусилители в порядке, а неисправность кроется либо в электронном прожекторе, отпереть который не удается, либо в цепи питания ускоряющего электрода этого прожектора. Эмиссионную способность каждого электронного прожектора кинескопа можно проверить при помощи авометра. Для измерения тока катодов прожекторов при помощи авометра необходимо разомкнуть контакты соединителей Ш21 на блоке цветности и к этим контактам подключить авометр, установленный для измерений постоянного тока по шкале до 0,5 — 0,б мА. По очереди выключая два луча из трех и устанавливая регулятор яркости в положение максимума, можно измерить ток катода каждого прожектора. У прожекторов с хорошей эмиссионной способностью максимальный ток должен быть не менее 200 — 300 мкА. При токе, уменьшенном до 100 мкА, яркость свечения экрана одним из первичных цветов может оказаться недостаточной, а при токе 50 мкА и менее при попытках увеличить яркость изображение становится как бы негативным, что особенно заметно, если включен только один электронный прожектор, эмиссия катода которого уменьшилась. Часто с целью повышения напряжения накала в цепь подогревателя катода кинескопа радиолюбители и радиомеханики последовательно к имеющейся на сетевом трансформаторе включают дополнительную обмотку из нескольких витков провода, намотанную на магнито-провод выходного трансформатора строчной развертки. После этого при включении телевизора в цепь подогревателя катода кинескопа сначала подается нормальное напряжение 6,3 В, затем по мере разогрева ламп блока строчной развертки появляется дополнительное напряжение и ток подогревателя увеличивается. При этом время разогрева катода оказывается больше по сравнению с тем, когда в цепь холодного подогревателя подается сразу увеличенное напряжение. Однако, несмотря на отмеченное положительное свойство, рекомендовать такой способ повышения напряжения накала подогревателя кинескопа нельзя, ввиду того, что при этом возникает нежелательная дополнительная нагрузка на оконечный каскад строчной развертки. В самом деле, при повышении напряжения накала подогревателя кинескопа, например, до 9 В, ток в цепи подогревателя возрастает примерно до 1,5 А. В этом случае средняя мощность, снимаемая с дополнительной обмотки, расположенной на выходном трансформаторе строчной развертки, составляет ЗХ1г5=4,5 Вт. Иногда пытаются осуществить накал подогревателя целиком от дополнительной обмотки, наматываемой на выходном трансформаторе строчной развертки подобно тому, как это делается в портативных телевизорах, питаемых и от сети и от батарей. В таких портативных телевизорах применяются кинескопы с экономичным катодом, ток подогревателя которых составляет 60 — 70 мА. В цветных унифицированных телевизорах серий УЛПЦТ-59-П, УЛПЦТ-61-П и УЛПЦТ(И)-61-П применяются кинескопы 59ЛКЗЦ и 61ЛКЗЦ с током накала подогревателя около 1 А. Поэтому при повышении напряжения накала, например, до 9 В и тока накала до 1,5 А среднее значение мощности, потребляемой цепью подогревателя от дополнительной обмотки выходного трансформатора строчной развертки, приближается к 15 Вт. Кроме того, на холодный подогреватель, сопротивление которого в это время мало, подается сразу увеличенное напряжение накала и возникает разогрев с большими перепадами температуры по сечению катода. Большие перепады температуры между внутренней и внешней поверхностями катода приводят к появлению механических напряжений, способствующих осыпанию частиц активированного слоя. При этом электрические поля уже имеющиеся между электродами кинескопа и до, и в процессе разогрева его катодов, ускоряют отрыв частиц активированного слоя. Из-за этого ухудшаются эмиссионные свойства катода и отделившиеся от него механические частицы могут создать нежелательную проводимость и даже замыкания между электродами прожектора. При таких способах питания подогревателя может возникнуть перегрев с опасностью возгорания выходного трансформатора строчной развертки и всего телевизора. Кроме того, стабилизация динамического режима оконечного каскада строчной развертки сдвигается на самый край диапазона ее работы. В тех же случаях, когда крутизна лампы оконечного каскада строчной развертки после длительной эксплуатации понижена, перегрузка оконечного каскада приводит к тому, что стабилизация его динамического режима перестает действовать. Из-за этого понижается стабильность высокого напряжения, подаваемого на анод кинескопа, а сведение лучей и баланс белого становятся нестабильными. Кроме того, при перечисленных способах повышения напряжения накала подогревателя трудно измерить полученное напряжение. Эти трудности обусловливаются тем, что при измерении широко распространенными авомет-рами среднего, эффективного или действующего значения импульсного напряжения с частотойГц, снимаемого с дополнительной обмотки, намотанной на выходном трансформаторе строчной развертки, возникают большие ошибки. Имея в виду все сказанное, лучшим способом питания повышенным напряжением подогревателя следует признать способ с использованием бареттера или ограничительного резистора. Бареттер или резистор ограничивают ток через холодную нить накала подогревателя, а бареттер еще и стабилизирует этот ток в процессе эксплуатации кинескопа. Благодаря такой стабилизации удлиняется срок службы кинескопа и на баланс белого перестают влиять колебания напряжения сети. При питании подогревателя через бареттер или ограничительный резистор необходимое повышение напряжения накала можно осуществить, намотав дополнительную обмотку на сетевом трансформаторе. Такая дополнительная обмотка наматывается проводом ПЭВ-1 диаметром 0,74 — 0,8 мм поверх имеющихся обмоток на любой половине магнитопровода сетевого трансформатора. Обмотка содержит 10 витков в случае применения бареттера 1Б5-9 и 12 витков при использовании бареттеров 0,85Б5,5-12 и 0,425Б5,5-12, а также при использовании вместо бареттеров автомобильных ламп 12 В на 20 или 25 Вт или линейных ограничительных и регулируемых резисторов с сопротивлением до 10 Ом, рассчитанным на мощность рассеяния 7,5 — 10 Вт. Дополнительная обмотка соединяется последовательно с имеющейся обмоткой накала кинескопа. При желании можно намотать новую обмотку для питания цепи накала кинескопа, содержащую 19 или 21 виток того же провода, дающую напряжение 13 или 14,5 В, и совсем не использовать имеющуюся обмотку накала кинескопа. Выше говорилось о необходимости ограничения бросков тока через подогреватель и о необходимости стабилизации накала кинескопа. Эти меры особенно нужны при увеличении напряжения накала кинескопов, эмиссионные свойства катодов которых понижены после длительной эксплуатации. Для того чтобы иметь возможность включить в цепь нити накала кинескопа бареттер или ограничительный резистор, необязательно наматывать на сетевом трансформаторе дополнительную обмотку. В телевизорах УЛПЦТ-59-П, УЛПЦТ-61-П и УЛПИЦТ-61-П различных модификаций в этом случае можно использовать обмотку накала ламп блока строчной развертки. На катодах ламп блока строчной развертки имеются значительные переменные и постоянные напряжения. Поэтому для уменьшения вероятности пробоев между катодами и нитями накала обмотка, питающая цепи накала этих ламп, находится под положительным потенциалом 40 В, который обеспечивается делителем из резисторов, подключенным к источнику анодного напряжения. На обмотку накала кинескопа с той же целью и таким же образом подан положительный потенциал около 200 В. Для увеличения напряжения накала кинескопа от разъема Ш5а следует отключить один из проводников и подключить его через бареттер или ограничительный резистор к одному из гнезд накала панели лампы 6П45С. Другое гнездо накала этой панели надо соединить с освободившимся гнездом разъема Ш5а (см. рис. 47 — 49). В блоках питания вместо резисторов R14 (рис. 48), R8 (рис. 49) и резисторов R5 (рис. 47), R15 (рис. 48), R15 (рис. 49) надо включить новые резисторы соответственно 56 кОм, 1 Вт и 20 кОм, 0,5 Вт. После этого делители, в которые входят резисторы, обеспечат на обмотках накала ламп и кинескопа положительный потенциал около 100 В. При этом разность потенциалов между катодами и нитями накала как у ламп, так и у кинескопа не превышает максимально допустимых значений. Из-за встречного включения обмоток накала ламп и кинескопа накал у последнего может отсутствовать. В этом случае надо поменять местами контакты разъема Ш5а. В телевизорах некоторых зарубежных фирм применяется режим непрерывного подогрева катода в течение всего срока службы кинескопа. При этом количество бросков тока при включении, приводящих к появлению в катоде механических напряжений и к отрыву частиц его активированного слоя, сводится к минимуму. Особенно важно это в безламповых телевизорах, где высокое напряжение может присутствовать на аноде кинескопа до и в процессе разогрева катода и где из-за одновременного действия механических напряжений и ускоряющего поля вероятность отрыва механических частиц от катода увеличивается. Кроме того, при непрерывном подогреве в безламповых телевизорах изображение появляется сразу после их включения. Расходы электроэнергии при непрерывном подогреве катода не столь уж велики и с избытком окупаются за счет продления срока службы дорогостоящего кинескопа. При этом не только продляется срок службы кинескопа, но и благодаря медленному изменению свойств его катодов регулировка телевизора в процессе эксплуатации будет производиться реже. Рис. 10. Схема непрерывного подогрева нити накала цветного кинескопа Для уменьшения расхода электроэнергии и продления срока службы подогревателя подогрев в то время, пока телевизор не работает, можно производить, подавая на подогреватель пониженное напряжение. Для кинескопов 59ЛКЗЦ и 61ЛКЗЦ при переключении напряжения накала с 2, 3, 4 и 5 В до 6,3 В время разогрева, а следовательно, и время, в течение которого велика вероятность отрыва механических частиц катода, составляет соответственно 15, 12, 10 и Зс. Если напряжение накала понизить до 5 В, расход электроэнергии снижается с 5,3 до 3,5 Вт. При переключении напряжения накала с 5 до 6,3 В время разогрева и перепады температур в катоде оказываются гораздо меньшими, благодаря чему вероятность отрыва механических частиц от катода снижается во много раз. В этом случае дополнительный расход электроэнергии из-за дежурного подогрева в течение 20 ч в сутки (остальное время телевизор работает) оказывается равным 0,07 кВт/ч, а в течение года — на сумму около 1 руб. Для реализации режима непрерывного подогрева катодов кинескопов в телевизорах УЛПЦТ-59-П, УЛПЦТ-61-П и УЛПИЦТ-61-П всех модификаций необходимо применить отдельный трансформатор, понижающий напряжение сети до 5 В с током вторичной обмотки до 0,7 А, и включить его так, как показано на рис. 10. В этой схеме для переключения напряжения в цепи накала кинескопа с 5 до 6,3 В используется одна группа контактов выключателя сети В2, имеющегося в телевизорах. Для дежурного нагрева рилка сетевого шнура должна все время оставаться включенной в розетку. Дополнительный трансформатор нужно установить в футляре телевизора подальше от хвостовой части кинескопа так, чтобы обеспечить минимум магнитных наводок на кинескоп и отклоняющую систему. Если между катодом и модулятором одного из электронных прожекторов кинескопа возникли проводимость или замыкание (яркость в одном из первичных цветов велика и не регулируется), то можно, отключив панельку кинескопа, подключить к соответствующему катоду и модулятору конденсатор емкостью 0,1 — 0,25 мкФ и более, предварительно заряженный от источника напряжения 270 — 320 В. В результате разряда конденсатора механическую частицу, замыкавшую модулятор с катодом, можно сжечь и восстановить работоспособность прожектора кинескопа. Иногда сильно ухудшается фокусировка изображения. Оно может оказаться настолько расплывчатым, что невозможно разглядеть даже крупные его детали. Кроме того, может понизиться яркость изображения. Изображение может также дергаться одновременно с самопроизвольным изменением фокусировки и яркости. Эти симптомы могут сопровождаться запахом горелой пластмассы. Все это может происходить не только из-за неисправностей в цепях питания анода и фокусирующих электродов кинескопа, но и из-за пробоя пластмассового цоколя кинескопа около вывода фокусирующего электрода. Пробой пластмассового цоколя кинескопа около вывода фокусирующего электрода можно обнаружить по искрению, заметному около этого вывода со стороны горловины кинескопа. В этом случае свечение экрана либо совсем отсутствует, либо на нем видно сильно расфокусированное неяркое подрагивающее изображение. При этом если выключить телевизор, снять панельку кинескопа, то можно почувствовать резкий запах горелой пластмассы вблизи его цоколя. Если по этим признакам будет обнаружено, что произошел пробой пластмассы цоколя кинескопа, то при наличии соответствующих навыков можно удалить часть этой подгоревшей пластмассы. Пробой чаще всего происходит между выводом фокусирующих электродов и двумя соседними ножками, поэтому следует удалить пластмассу около 7 и 11, а также между 7 — 9 и 9- — 11 выводами на цоколе. Для этого надо лобзиком, ножовочным или шлицовочным полотном сделать два пропила на пластмассе цоколя между его ножек так, как показано на рис. 11. Пропилы надо делать осторожно, держа полотно лобзика или пилы все время строго параллельно ножкам цоколя и следя за тем, чтобы не пропилить ножки и не царапнуть стекло цоколя в конце пропила. Сделав пропилы, надо осторожно удалить отпиленные части пластмассы цоколя и промыть бензином или денатурированным спиртом поверхность стекла вокруг вывода фокусирующих электродов. Если оставшаяся часть пластмассы со стороны стекла цоколя обуглена, нужно счистить обуглившийся слой тонким надфилем или шилом, осторожно просовывая его заостренный конец между стеклом и пластмассой. После этого пластмассу и стекло надо также промыть бензином или денатурированным спиртом. Чтобы предотвратить возникновение коронирующего разряда с 9 на 7 и 11 ножки цоколя, на освободившиеся от пластмассы части этих ножек надо надеть отрезки толстостенной хлорвиниловой трубки с внутренним диаметром 1 мм и длиной 6 — 6,5 мм. После того как цоколь высохнет после промывки, надо произвести пробное включение и убедиться в отсутствии искрения и запаха горелой пластмассы около вывода фокусирующих электродов. Иногда в результате междуэлектродных пробоев в цветных кинескопах возникает проводимость между модуляторами и ускоряющими электродами. Эта проводимость может явиться причиной утечки тока с ускоряющих электродов в цепи модуляторов. А так как в цепях модуляторов включены высокоомные резисторы 2R103, 7R196, 2R107, 7R198, 2R162, 2R163, 2R214, 2R217 и 7R199 (рис. 9), то напряжение на модуляторе, на котором возникла утечка, оказывается повышенным. Из-за этого ток соответствующего луча кинескопа оказывается увеличенным, экран окрашивается в один из первичных цветов и яркость его не поддается регулировке. В то же время эмиссионные способности электронных прожекторов у таких кинескопов часто остаются еще достаточно высокими и кинескоп мог бы еще эксплуатироваться длительное время. Для того чтобы иметь возможность продолжить эксплуатацию цветных кинескопов с такими неисправностями, надо цепь того модулятора, на который возникла утечка тока, сделать более низкоомной. Это дает возможность, несмотря на возникшую утечку, обеспечить необходимое по величине и, что самое главное, стабильное напряжение на таком модуляторе. С этой целью резистор 2R103, 2R214 или 2R162 надо отключить и вместо него включить стабилитрон Д1 (штриховые линии на рис. 9). Динамическое сопротивление стабилитрона при таком включении составляет несколько сот ом. Это дает возможность осуществить жесткую привязку цепи модулятора к анодной нагрузке усилителя цвето-разностного сигнала 2R101, 2R102, 2R161, 2R160 или 2R212, 2R213. Сопротивление перечисленных резисторов во много раз меньше, чем в делителе, образованном резисторами 2R107, 7R196, 2R164, 7R198 или 2R216, 7R199. Поэтому после включения стабилитрона цепь модулятора становится более низкоомной и, несмотря на изменяющуюся утечку из цепи ускоряющего электрода в цепь модулятора, напряжение на последнем будет более стабильным, и значение этого напряжения оказывается в необходимых пределах (около 100 В). В то же время режим работы усилителя цветоразностного сигнала после включения стабилитрона Д1 не изменяется, что позволяет сохранить необходимую амплитуду и линейность усиленных цветоразностных сигналов. После замены резистора 2R103, 2R162 или 2R214 стабилитроном выключать соответствующий прожектор тумблером 7В1, 7В2 или 7ВЗ (либо октальным переключателем цветовых полей) не удается, но зато срок службы такой дорогостоящей детали как кинескоп, несмотря на возникшую неисправность, будет продлен. В качестве стабилитрона Д1 можно применить любой слаботоковый стабилитрон с напряжением стабилизации около 100 В (например, КС291А, КС596В, КС620А и даже Д817Г или Д817В). Рис. 11. Удаление обгоревшей пластмассы цоколя кинескопа При отсутствии такого стабилитрона для понижения сопротивления в цепи модулятора, на который возникла утечка, можно подключить этот модулятор непосредственно к резисторам анодной нагрузки лампы усилителя цветоразностного сигнала. А для достижения на этом модуляторе приблизительно такого же напряжения, как и на двух других, на резисторы анодной нагрузки указанной лампы вместо напряжения -(-380 В надо подать напряжение +170 В, имеющееся в блоке цветности. На рис. 9 для этого варианта штриховыми линиями показаны переключения, которые необходимо сделать при возникновении утечки с ускоряющего электрода в цепь модулятора зеленого электронного прожектора. После этих переключений выключать такой электронный прожектор тумблером 7В2 (или октальным переключателем цветовых полей) также не удается. Кроме того, из-за понижения напряжения питания с +380 до — f-170 В ухудшается линейность амплитудной характеристики усилителей, уменьшается амплитуда цветоразностных сигналов. Уменьшение амплитуды сигналов на выходе этих усилителей удается скомпенсировать, изменяя при помощи одного из резисторов 2R86, 2R157 или 2R200 амплитуду сигналов на входе соответствующего усилителя. Снижение линейности амплитудной характеристики одного из усилителей цветоразностных сигналов при большой амплитуде усиливаемых сигналов приводит к некоторому ухудшению естественности воспроизведения цвета, заметному в основном лишь для одного из насыщенных первичных цветов. Так как насыщенных цветов в реальных изображениях мало, то с этим можно мириться, если иметь в виду, что срок службы неисправного кинескопа будет существенно продлен. После уменьшения напряжения питания анодной цепи одного из усилителей цветоразностных сигналов до +170 В, регулируя в блоке цветности (см. рис. 13) под-строечный резистор 2R151 или 2R155 при среднем положении регуляторов цветового тона 7R14 и 7R16, надо добиться приблизительно одинакового напряжения на контрольных точках 2КТ6, 2КТ14 и 2КТ19. Так как в усилителе «синего» цветоразностного сигнала подстроеч-ного резистора для этой цели нет, то грубую регулировку напряжения на контрольной точке 2КТ19 можно осуществить, закорачивая один из резисторов анодной нагрузки 2R212 или 2R213. С этой же целью можно закоротить один из резисторов 2R101, 2R102, 2R160 или 2R161, если с помощью подстроечного резистора 2R151 или 2R155 не удается достичь необходимого напряжения в контрольной точке 2КТ6 или 2КТ14. Несмотря на меры, принятые в цветных телевизорах против возникновения пробоя изолятора между катодами и подогревателями в цветных кинескопах, все же иногда возникает замыкание между одним из катодов и подогревателем. Происходит это не из-за пробоя изолятора между этими электродами, а из-за частичного разрушения этого изолятора. Такое разрушение может происходить в результате механических напряжений, многократно возникающих при разогревах и остываниях катода и подогревателя в процессе длительной эксплуатации. Так, например, при замыкании катода с подогревателем в красном или зеленом электронном прожекторе при максимальных сопротивлениях в цепи этих катодов подстроенных резисторов 9R1 и 9R2, на изображении отсутствуют детали красного или зеленого цвета, и оно приобретает сине-зеленый или пурпурный оттенок. Если же замыкание возникло в цепи катода, где сопротивление подстроечного резистора 9R1 или 9R2 минимально, то из-за шунтирования нагрузки 2R46 2ДрЗ 2Др4 усилителя яркостного сигнала конденсатором 5С7, подключенным к цепи накала кинескопа в блоке питания, детали изображения исчезают и на экране остаются лишь цветные пятна, раскрашивающие эти детали. То же самое происходит и при замыкании катода с подогревателем в «синем» электронном прожекторе. Если при этом конденсатор 5С7 отключить, то на экране появляется нечеткое смазанное изображение с нормальными по насыщенности и естественными цветами. Размазанным изображение оказывается потому, что большая собственная емкость обмотки накала кинескопа 9- 9′ в сетевом трансформаторе 5Тр1 шунтирует нагрузку усилителя яркостного сигнала и ухудшает его амплитудно-частотную характеристику. Для того чтобы продолжить эксплуатацию кинескопа с замыканием между одним из катодов и подогревателем, можно на трансформатор 5Тр1 намотать поверх всех его обмоток новую обмотку накала кинескопа с меньшей собственной емкостью. Для уменьшения собственной емкости этой обмотки ее следует намотать проводом с наиболее толстой изоляцией. Для этого надо использовать центральный проводник с толстой изоляцией от высокочастотных кабелей с волновым сопротивлением 75 Ом больших диаметров. Обмотка должна содержать 10 витков. Для уменьшения емкости, шунтирующей нагрузку усилителя яркостного сигнала, подключение цепи накала кинескопа к новой обмотке надо выполнить самыми короткими проводниками и не использовать разъем Ш5. После подключения новой обмотки накала четкость изображения немного повысится и оно не будет таким смазанным. Для достижения максимально возможной четкости изображения необходимо совсем устранить шунтирование нагрузки усилителя яркостного сигнала емкостью цепи накала кинескопа. С згой целью можно смонтировать дополнительный катодный повторитель Уайта на лампе Л1 (штриховые линии на рис. 9) и включить его между нагрузкой усилителя яркостного сигнала и катодами кинескопа. Панельку лампы Л1 можно установить на дополнительном кронштейне, прикрепленном к кромке шасси блока цветности, или расположить на весу поблизости от лампы 2Л1 усилителя яркостного сигнала! При подключении повторителя вывод анода диода 2Д8 и левый (по схеме) вывод конденсатора 2С20 отпаиваются от печатной платы и соединяются с выходом повторителя. Выходное сопротивление повторителя Уайта на лампе Л1 составляет несколько десятков Ом, и поэтому высокой четкости изображения удается достичь, не наматывая новую обмотку накала. Для того чтобы напряжение между нитью накала и катодом у лампы 6Н1П не было больше допустимого, нить накала этой лампы следует подключить к цепи накала кинескопа — к соединителю Ш5а. Проведение такой в общем-то не столь значительной доработки в телевизоре дает возможность также продлить эксплуатацию дорогостоящего кинескопа, несмотря на такую серьезную его неисправность. Серьезной неисправностью кинескопа, из-за которой приходится прекращать его эксплуатацию, является обрыв одного из катодов. В этом случае при приеме как цветного, так и черно-белого изображения отсутствует свечение в одном из первичных цветов: красном, синем или зеленом. При такой неисправности обрывается ленточный проводник, соединяющий катод соответствующего электронного прожектора с ножкой цоколя, вваренной в его стеклянное дно. Обрыв этого проводника происходит в результате многократных механических напряжений при разогревах и остывании катода в процессе эксплуатации. Восстановить это соединение, не нарушая вакуума в кинескопе, невозможно. Однако, если эмиссионные свойства катодов такого кинескопа еще удовлетворительны, то можно продлить его эксплуатацию, создав искусственное замыкание между оборванным катодом и подогревателем. Рис. 12. Схема включения кит скопа с оборванным катодом Для создания искусственного замыкания между оборванным катодом я подогревателем необходимо воспользоваться проводящими свойствами системы электродов «катод — модулятор». Катод и модулятор могут выступать в роли электровакуумного диода, анодом которого является модулятор. Такой диод, как известно, проводит ток, если к его аноду (модулятору) при дожить положительный потенциал относительно катода. Между оборванным катодом и подогревателем из-за неидеальной изоляции всегда имеется некоторая проводимость. Эта проводимость повышена у кинескопов, находившихся в длительной эксплуатации. Поэтому если к модулятору относительно подогревателя приложить положительный потенциал, то через диод, образованный катодом и модулятором, потечет некоторый »$грк. Внутреннее сопротивление этого диода во много, раз меньше, чем сопротивление изоляции катод — подогреватель. Поэтому большая часть напряжения, приложенного между модулятором (анодом диода) и подогревателем, выделится на участке катод — подогреватель. Этим можно воспользоваться для создания искусственного замыкания за счет электрического пробоя изоляции между оборванным катодом и подогревателем. Однако такое искусственное замыкание, созданное между нагретым катодом и подогревателем, может исчезнуть после остывания катода и не восстановиться при по-следующем его нагреве. Объясняется это тем, что из-за относительно небольшого тока в цепи катод — модулятор электрический пробой изоляции между катодом и подогревателем происходит на весьма малом участке изолятора. При этом из-за механических деформаций изолятора при остывании катода замыкание между ним и подогревателем может исчезнуть. Источник |