ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ
В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.
Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.
Включаем в сеть прибор
Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.
Коды ошибок ТВ по миганию LED
После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.
Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?
Блок схема ЖК ТВ
В таком случае, можно попробовать попросить помощи на специализированных форумах по ремонту техники, после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. Читайте тут как пользоваться обычным мультиметром.
Тестер в режиме звуковой прозвонки
Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.
Разъем питания платы управления ТВ
Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме — это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR подробнее здесь.
Таблица ESR конденсаторов
В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо транзистор тестер, правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.
Мой прибор ESR метр
Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.
Фото — вздувшийся конденсатор
То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.
Мультиметр в режиме Омметра
Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.
Цветовая маркировка резисторов
Если есть возможность прочитать его номинал, по маркировке цветными кольцами, нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.
Транзисторы разные на фото
Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.
Проверка транзистора мультиметром
Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод описан тут. У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. Мосфеты, полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.
Мосфет в SMD и обычном корпусе
При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.
Мосфеты на материнской плате ПК
Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.
Диодные сборки на схеме
Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте, шокирует — им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.
Параллельное и последовательное соединение резисторов
Здесь лучше всего один раз запомнить, правило подобных соединений:
- При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
- А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.
Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы — AKV.
Форум по обсуждению материала ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ
Источник
Универсальный электронный модуль для стиральных машин
Данная статья является частью книги Электронные модули стиральных машин и любезно предоставлена для ознакомления читателям «РадиоЛоцмана» издательством «Ремонт и Сервис».
Как известно, большинство производителей стиральных машин не поставляют полную сервисную информацию на свою продукцию (это касается, например, принципиальных схем модулей, описания работы входящих в их состав компонентов, принципов взаимодействия основных узлов стиральных машин и др.). Поэтому часто специалисты сервисных центров при проведении ремонтных работ выполняют только поблочную замену вышедших из строя компонентов стиральных машин (СМ). В большинстве случаев это оправдано — вышедшие из строя , например, клапаны залива воды, помпа, прессостат, приводной мотор и др. — восстановлению действительно не подлежат. Отдельно в этом списке стоят электронные модули — их ремонт на компонентном уровне экономически целесообразен (за исключением сложных случаев или когда модуль имеет значительные повреждения).
Что же касается еще находящихся в эксплуатации старых моделей СМ, ситуация усугубляется еще тем, что по ним комплектующие могут уже не поставляться. Чтобы «продлить жизнь» подобным аппаратам, подбираются аналоги некоторых узлов и элементов. Главная проблема — электронные модули. Для старых типов СМ найти модули на замену достаточно проблематично. В качестве альтернативы решения подобной проблемы можно использовать аналоги подобных модулей.
В этой главе мы хотим познакомить читателей с новой разработкой — универсальным электронным модулем для стиральных машин. Он может быть использован вместо штатных модулей в СМ с асинхронными, коллекторными и комбинированными асинхронно-коллекторными приводными моторами. Основные его достоинства — универсальность, низкая стоимость, простота, высокая ремонтопригодность.
Рассматриваемый универсальный электронный модуль предназначен для установки вместо штатных модулей СМ. Модуль выполнен на основе микроконтроллера и не требует подключения командоаппарата. Отметим, что если в СМ уже имеется штатный командоаппарат, после установки модуля он будет выполнять только декоративную функцию.
Рассматриваемая версия модуля легко адаптируется с большинством типов внешних элементов СМ (с контактными датчиками уровня воды, различными типами датчиков температуры, ТЭН, приводными моторами, клапанами залива воды, устройством блокировки люка и др.). Управление модулем производится по инфракрасному каналу от телевизионного пульта дистанционного управления (ПДУ). Несмотря на простоту модуля и классическую схемотехническую реализацию функциональных узлов и цепей, многие схемотехнические решения схожи с аналогичными узлами ведущих компаний-производителей бытовой техники. При разработке модуля были учтены «слабые места» аналогичных узлов промышленного изготовления. В частности, для снижения вероятности выхода из строя микроконтроллера (в цепях управления силовыми нагрузками), в нем применены интегральные буферные ключи типа ULN2003, также в цепи формирователя сигналов с тахогенератора используется оптрон. Применение оптрона, кроме обеспечения гальванической развязки повышает помехозащищенность микроконтроллера от наводок работающего коллекторного приводного мотора, что особенно важно при повышенном износе щеток.
В настоящее время готовятся варианты модуля, управление которых может выполняться от селектора программ и функциональных кнопок (в том числе, штатно установленных в СМ). Также ведется разработка модуля с мощными коммутаторами на IGBT-транзисторах для управления асинхронным приводным мотором.
Внешний вид универсального электронного модуля показан на рис. 8.1.1.
Рис. 8.1.1. Внешний вид универсального электронного модуля
Основные функции модуля и его управление
Универсальный модуль обеспечивает аппаратно-программное управление следующими элементами в составе СМ:
- асинхронными или коллекторными приводными моторами;
- помпой;
- клапанами залива воды;
- устройством блокировки люка;
- ТЭНом.
Он также обеспечивает прием и обработку сигналов от элементов:
- контрольной контактной группы замка дверцы люка;
- датчика уровня воды;
- датчика температуры;
- датчика вибрации (если есть необходимость в его установке).
Порядок управления модулем
Внешнее управление электронным модулем (и СМ в целом) производится по инфракрасному каналу с помощью телевизионного пульта дистанционного управления PANASONIC (типа EUR7717010 или ему подобным).
В составе пользовательского интерфейса модуля имеется три меню:
- основных программ;
- дополнительных опций;
- служебное меню.
Меню основных программ служит для выбора стандартных программ стирки — 7 основных программ и 3 дополнительных режима (полоскание+отжим, отжим и слив воды).
Меню дополнительных опций включает в себя следующие опции: предварительная стирка, интенсивная стирка, суперполоскание, без отжима. Вход это меню выполняется нажатием кнопки «MENU» на ПДУ.
Из служебного меню можно управлять отдельными узлами СМА с целью контроля их работоспособности и при поиске неисправностей. Это меню предназначено для специалистов. Вход в служебное меню выполняют нажатием кнопки «PIC MENU».
Из меню основных программ кнопками ПДУ «1-7» выбирается одна из семи стандартных программ стирки, алгоритм работы которых записан в памяти микроконтроллера, кнопкой «8» — полоскание +отжим, кнопкой «9» — режим отжима, а кнопкой «0» — слив воды.
Например, чтобы запустить программу стирки «хлопок, температура воды 60ºС», нужно нажать кнопку «2», а затем — «ОК». Чтобы запустить эту же программу, но с дополнительной опцией «суперполоскание» — нажимают кнопку «2», затем «MENU», «3» (выбор опции «суперполоскание») и «ОК».
Основные меню и их функции представлены в табл. 8.1.1.
Таблица 8.1.1. Основные меню и порядок активации их функций
Источник