Установлено что время ремонта телевизоров есть случайная величина

Показательный (экспоненциальный закон распределения).

Случайная величина Х распределена по показательному закону распределения с параметром λ, если её плотность вероятности имеет вид:

Функция распределения имеет вид:

Математическое ожидание и дисперсия для случайной величины, распределенной по показательному закону, находятся по формулам:

,

То есть при

Пример.

Установлено, что время ремонта телевизоров есть случайная величина X, распределенная по показательному закону.

Определить вероятность того, что на ремонт телевизора потребуется не менее 20дней, если среднее время ремонта телевизоров составляет 15 дней. Найти плотность вероятности, функцию распределения и среднее квадратическое отклонение случайной величины X.

Решение:

По условию математическое ожидание M(х)=1/λ = 15, откуда параметр λ = 1/15. Тогда плотность вероятности и функция распределения примут вид:


Искомую вероятность P(Х ≥20) можно было найти по формуле, интегрируя плотность вероятности, то есть

но проще это сделать, используя функцию распределения:

Найдем среднее квадратическое отклонение: σ(X) = М(Х) = 15 дней.

Источник

Показательный (экспоненциальный закон распределения)

Случайная величина Х распределена по показательному закону распределения с параметром λ, если её плотность вероятности имеет вид:

Функция распределения имеет вид:

Математическое ожидание и дисперсия для случайной величины, распределенной по показательному закону, находятся по формулам:

То есть при

Пример.

Установлено, что время ремонта телевизоров есть случайная величина X, распределенная по показательному закону.

Определить вероятность того, что на ремонт телевизора потребуется не менее 20 дней, если среднее время ремонта телевизоров составляет 15 дней. Найти плотность вероятности, функцию распределения и среднее квадратическое отклонение случайной величины X.

Решение:

По условию математическое ожидание M(х)=1/λ = 15, откуда параметр λ = 1/15. Тогда плотность вероятности и функция распределения примут вид:


Искомую вероятность P(Х ≥20) можно было найти по формуле, интегрируя плотность вероятности, то есть

но проще это сделать, используя функцию распределения:

Найдем среднее квадратическое отклонение: σ(X) = М(Х) = 15 дней.

Равномерный закон распределения.

Непрерывная случайная величина Х имеет равномерный закон распределения (закон постоянной плотности) на отрезке [a; b], если на этом отрезке функция плотности вероятности случайной величины постоянна, то есть

Следовательно, математическое ожидание случайной величины, равномерно распределенной на отрезке (a, b), равняется середине этого отрезка.

Дисперсия имеет вид:

Найдем вероятность попадания значения случайной величины, имеющей равномерное распределение, на интервал , принадлежащий целиком отрезку [a, b]:

Функция распределения примет вид:

Пример.

Поезда метрополитена идут регулярно с интервалом 2 мин. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать пассажиру придется не больше полминуты.

Найти математическое ожидание и среднее квадратическое отклонение случайной величины X – времени ожидания поезда.

Решение:

Случайная величина X – время ожидания поезда на временном (в минутах) отрезке [0;2] имеет равномерный закон распределения f (x)=1/2.

Поэтому вероятность того, что пассажиру придется ждать не более полминуты, равна 1/4 от равной единице площади прямоугольника, т.е.

Найдем математическое ожидание, дисперсию и среднее квадратическое отклонение:

Источник

Показательный (экспоненциальный) закон распределения

Определение. Непрерывная случайная величина Х имеет показательный (экспоненциальный) закон распределения с параметром λ, если ее плотность вероятности f(x) имеет вид:

(6.13)

Кривая распределения f(x) и график функции распределения F(x) случайной величины Х приведены соответственно на рис. 7.3 и рис. 7.4.

Рис. 7.3 Рис. 7.4

Теорема. Функция распределения случайной величины Х, распределенной по показательному (экспоненциальному) закону, есть

(6.14)

ее математическое ожидание

, (6.15)
. (6.16)

Отсюда следует, что для случайной величины, распределенной по показательному закону, математическое ожидание равно среднему квадратическому отклонению, т.е.

.

Вероятность попадания в интервал [a; b] непрерывной случайной величины Х, распределенной по показательному закону, находится как

. (6.17)

Пример 6.1. Установлено, что время ремонта железнодорожных вагонов есть случайная величина Х, распределенная по показательному закону. Определить вероятность того, что на ремонт вагона потребуется менее 7 дней, если среднее время ремонта вагонов составляет 10 дней.

Решение. По условию математическое ожидание М(Х) = 1/λ = 10, откуда параметр λ = 0,1. По формуле (6.17) находим вероятность попадания случайной величины Х в интервал [0, 7]:

Показательный закон распределения играет большую роль в теории массового обслуживания. Так например, интервал времени между двумя соседними событиями в простейшем потоке имеет показательное распределение с параметром λ – интенсивностью потока.

Кроме того, показательное распределение широко применяется в теории надежности, одним из основных понятий которой является функция надежности.

Функция надежности

Будем называть элементом некоторое устройство. Пусть элемент начинает работать в момент времени τ0 = 0, а по истечении времени τ происходит отказ.

Обозначим через Т непрерывную случайную величину – длительность времени безотказной работы элемента. Если элемент проработал безотказно (т.е. до наступления отказа) время, меньшее чем τ, то, следовательно, за время длительностью τ наступил отказ.

Таким образом, интегральная функция

Функцией надежности R(τ), называют функцию, определяющую вероятность безотказной работы элемента за время длительностью τ:

R(τ) = P(T > τ) = eλτ , (6.18)

где λ – интенсивность отказов.

Широкое использование показательного закона распределения обусловлено тем, что только он обладает следующим важным свойством:

Если промежуток времени Т, распределенный по показательному закону, уже длился некоторое время τ, то это никак не влияет на закон распределения оставшейся части Т1 = Т – τ промежутка, т.е. закон распределения Т1 остается таким же, как и всего промежутка Т.

Пример 6.2. Время безотказной работы устройства распределено по показательному закону f(t) = 0,02e -0,02 t при t ≥ 0 (t – время в часах). Какова вероятность того, что устройство проработает безотказно 50 часов?

Решение. По условию постоянная интенсивность отказов λ = 0,02. Используя формулу (6.18), получаем:

Источник

Экспоненциально распределенная случайная величина

На странице Непрерывная случайная величина мы разобрали примеры решений для произвольно заданных законов распределения (многочлены, логарифмы и т.п.). Здесь же мы разберем примеры только для одного типа СВ — распределенных по показательному (или экспоненциальному) закону.

Плотность распределения величины $X$ с экспоненциальным законом распределения задается формулой:

Функция распределения величины $X$:

Здесь $\lambda$ — единственный параметр данного распределения, полностью определяющий его свойства. В частности, числовые характеристики выражаются через этот параметр: $M(X)=1/\lambda$, $D(X)=1/\lambda^2$.

Экспоненциальное распределение моделирует время между двумя последовательными свершениями события, а параметр $\lambda$ описываетс среднее число наступлений события в единицу времени. Обычно с помощью этого закона описывают: продолжительность обслуживания покупателя, время жизни оборудования до отказа, промежуток времени между поломками и т.п.

В этом разделе мы приведем разные примеры задач с полным решением, где используются показательно распределенные случайные величины.

Примеры решений

Задача 1. Среднее время безотказной работы прибора равно 80 часов. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:
а) выражение его плотности вероятности и функции распределения;
б) вероятность того, что в течение 100 часов прибор не выйдет из строя.

Задача 2. Известно, что время работы прибора до первого отказа подчиняется показательному распределению со средним значением 1 год. Какова вероятность, что до первого отказа пройдет не менее 2 лет?

Задача 3. Установлено, что время ремонта телевизоров есть случайная величина $X$, распределенная по показательному закону с параметром $\lambda=1/3$ (1/день). Определить вероятность того, что на ремонт телевизора потребуется не менее 5 дней.

Задача 4. Время в годах безотказной работы прибора подчинено показательному закону, т.е. плотность распределения этой случайной величины такова: $f(t)=2e^<-2t>$ при $t\ge 0$ и $f(t)=0$ при $t\lt 0$.
1) Найти формулу функции распределения этой случайной величины.
2) Определить вероятность того, что прибор проработает не более года.
3) Определить вероятность того, что прибор безотказно проработает 3 года.
4) Определить среднее ожидаемое время безотказной работы прибора.

Задача 5. Предполагая, что случайное время обслуживания абонента службой «09» распределено по показательному закону и средняя продолжительность обслуживания составляет 1,5 минуты, найдите вероятность того, что абонент будет обслужен более, чем за 2 минуты.

Задача 6. Длительность телефонного разговора подчиняется показательному закону. Найти среднюю длительность разговора, если вероятность того, что разговор продлится более 5 минут, равна 0,4.

Задача 7. Случайная величина задана плотностью распределения $p(x)=ce^<-3x>$ при $x \gt 0$, и ноль в остальных случаях. Найти постоянную $c$, математическое ожидание, дисперсию и среднее квадратическое отклонение.

Задача 8. Непрерывная случайная величина $\xi$ распределена по показательному закону с параметром $\lambda$, равному номеру варианта 9. Найти плотность распределения случайной величины $\xi$, функцию распределения, построить графики этих функций. Найти математическое ожидание, дисперсию, среднее квадратическое отклонение случайной величины $\xi$ и вероятность того, что $\xi$ принимает значения, меньшие своего математического ожидания.

Задача 9. Случайная величина $\xi$ распределена по показательному закону с параметром 2. Найти $M_<\xi>$, $D_<\xi>$ вероятность попадания $\xi$ в интервал $(-1;2)$. Нарисовать графики плотности распределения и функции распределения $\xi$.

Задача 10. Известно, что $Х$ распределено по экспоненциальному закону $Exp(\lambda)$. Найдите вероятность события $|Х — МХ | \lt 3\sigma$ («правило $3\sigma$» для показательного распределения).

Решебник по теории вероятности онлайн

Больше 11000 решенных и оформленных задач по теории вероятности:

Источник

Читайте также:  Фонит магнитола пионер ремонт
Оцените статью