- Конструкция зарядного устройства от шуруповёрта
- Схема, устройство, ремонт
- Сменный аккумулятор.
- Алгоритм работы схемы довольно прост.
- Возможные неполадки зарядного устройства.
- Зарядное устройство для литиевых аккумуляторов
- Шаг 2: Начинаем собирать
- Как правильно заряжать литиевые аккумуляторы
- Двухступенчатая схема зарядки батареи литиевых аккумуляторов
- Как контролируют параметры зарядки
- Ремонт зарядной станции
- Особенности литиевых батарей
- Зарядное устройство для литиевых аккумуляторных батареек 18650 своими руками
- Как сделать зарядное устройство для литиевого аккумулятора своими руками
- Как заряжать аккумулятор, правила
- Не разряжать полностью
- Полная разрядка производится не чаще раза в 3 месяца
- Хранение с небольшим зарядом
- Заряжать только оригинальной зарядкой
- Не перегревать аккумулятор при зарядке
- Виды зарядных устройств
- Типы применяемых батарей
- Схема подключения литиевых аккумуляторов
- Усовершенствование зарядного устройства для Li-ion аккумуляторов
- Схемы балансиров для литиевых аккумуляторов
- Как зарядить литиевый аккумулятор 12 вольт
- Шаг 6: Сборка, часть 1: прорезаем отверстия в корпусе
- Контроллер заряда Li-ion аккумулятора своими руками
Конструкция зарядного устройства от шуруповёрта
Схема, устройство, ремонт
Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.
Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».
Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.
Печатная плата зарядного устройства (CDQ-F06K1).
Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.
Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.
Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.
При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.
Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.
Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.
Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.
Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.
Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.
Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.
Сменный аккумулятор.
Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.
На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.
Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.
Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.
Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.
Алгоритм работы схемы довольно прост.
При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.
При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.
После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.
Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.
Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.
Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.
На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).
Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.
Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.
Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.
Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.
Возможные неполадки зарядного устройства.
Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.
Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.
В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.
После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.
Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.
Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.
Источник
Зарядное устройство для литиевых аккумуляторов
Шаг 2: Начинаем собирать
- Возьмите печатную плату общего назначения и поместите батареи поверх платы;
- Отметьте расстояние между краями батарей и их ширину печатной плате;
- Разверните 8 канцелярских скрепок и используя плоскогубцы, вырезайте зажимы с краев, как видно на изображении выше;
- Должно быть сделано в общей сложности 8 U-образных зажимов (в зависимости от количества заряжаемых батарей);
- Вставьте U-образные зажимы в печатную плату, чтобы батареи можно было установить между зажимами;
- Зажимы будут действовать как держатели батарей;
- Кроме того, используйте оставшиеся части от скрепок, чтобы сделать боковые упоры;
- Хорошо прикрепите зажимы на плате как показано на рисунке.
Примечание: убедитесь, что зажимы не подключены друг к другу во время пайки.
Как правильно заряжать литиевые аккумуляторы
Существует несколько схем зарядки литиевых аккумуляторов. Чаще используется двухэтапная зарядка, разработанная компанией SONY. Не применяются устройства с применением импульсного заряда и ступенчатой зарядки, как для кислотных АКБ.
Зарядка любых разновидностей ионно-литиевых или литий-полимерных аккумуляторов требует строгое соблюдение напряжения. На одном элементе заряженного литиевого аккумулятора должно быть не больше 4,2 В. Номинальным напряжением для них считается 3,7 В.
Литиевые аккумуляторы можно ли заряжать быстро, не полностью? Да. Их всегда можно дозарядить. Работа батареи на 40-80 % емкости удлинняет АКБ срок годности.
Двухступенчатая схема зарядки батареи литиевых аккумуляторов
Принцип схемы CC/CV – постоянная сила зарядного тока/ постоянное напряжение. Как зарядить по этой схеме литиевый аккумулятор?
На схеме до 1 этапа зарядки изображен предэтап, для восстановления глубоко севшего литиевого аккумулятора, с напряжением на клеммах не менее 2,0 В. Первый этап должен восстановить 70-80 % емкости. Ток зарядки выбирают 0,2-0,5 С. Ускоренно заряжать можно, током 0,5-1,0 С. (С – емкость литиевых аккумуляторов, цифровое значение). Каким должно быть напряжение зарядки на первом этапе? Стабильным, 5 В. Когда достигнуто напряжение на клеммах аккумулятора 4,2 – это сигнал перехода на второй этап.
Теперь ЗУ поддерживает стабильное напряжение на клеммах, а зарядный ток по мере поднятия емкости снижается. При уменьшении его значения до 0,05-0,01 С зарядка закончится, устройство отключится, не допуская перезарядки. Общее время восстановления емкости для литиевого аккумулятора не превышает 3 часов.
Если литий-ионная батарея разряжена глубже 3,0 В, потребуется провести «толчок». Это заключается в зарядке малым током до тех пор, пока на клеммах не будет 3,1 В. Потом используется обычная схема.
Как контролируют параметры зарядки
Так как литиевые аккумуляторы работают в узком диапазоне изменения напряжения на клеммах, их нельзя перезаряжать выше 4,2 В и допускать разрядку ниже 3 В. Контроллер заряда установлен в ЗУ. Но каждый аккумулятор или батарея имеют собственные прерыватели, РСВ плату или РСМ модули защиты. В аккумуляторах установлена именно защита от того или иного фактора. В случае нарушения параметра, она должна отключить банку, разорвать цепь.
Контроллер – устройство, которое должно реализовать функции управления – переводить режимы CC/CV, контролировать количество энергии в банках, отключать зарядку. При этом сборка работает, нагревается.
Самодельные схемы зарядки, применяемые для литиевых аккумуляторов
- LM317 – схема простого зарядного устройства с индикатором заряда. От USB порта не запитывается.
- MAX1555, MAX1551- специально для Li Аккумуляторов, устанавливаются в адаптер питания от телефона в USB. Есть функция предварительного заряда.
- LP2951- стабилизатор ограничивает ток, формирует стабильное напряжение 4,08-4,26В.
- MCP73831- одна из простейших схем, подходит для зарядки ионных и полимерных устройств.
Если батарея состоит из нескольких банок, разряжаются они не всегда равномерно. При зарядке необходим балансир, распределяющий заряд и обеспечивающий равномерный заряд всех банок в батарее. Балансир может быть отдельным или встроенным в схему подключения АКБ. Устройство защиты батареи называется BMS. Зная как заряжать приборы, разбираясь в схемах, можно своими руками собрать схему защитного устройства для литиевого аккумулятора.
Ремонт зарядной станции
Своими руками устраняют простые неисправности. Пример ремонта показан на станции 12В ДА-10/12ЭР для литий-ионных батарей напряжением 12 В, ток 1,8 А. Прибор состоит из понижающего трансформатора, четырехдиодного моста, сглаживающего пульсацию конденсатора. Светодиоды сигнализируют о подключении питания, начале и конце заряда.
Если не загорается индикатор включения, проверяют первичную обмотку трансформатора. Для этого измеряют тестером сопротивление, коснувшись щупами штырей вилки. Если есть обрыв, вскрывают корпус. Возможно, сгорел сетевой предохранитель, который меняют.
На некоторых моделях ЗУ установлен тепловой предохранитель. Он находится сверху первичной обмотки трансформатора под изоляцией, разрывает цепь при температуре +120…+130°С. Восстановление невозможно, поступают другим образом: пайкой соединяют концы обмоток. После этой операции трансформатор не защищен от короткого замыкания, поэтому лучше поставить сетевой предохранитель.
При целой первичной обмотке прозванивают вторичную и диоды. Один конец полупроводников выпаивают, подключают омметр, меняя положение щупов. Исправный диод показывает при одном подключении обрыв, при другом – КЗ. Перегоревшая первичная обмотка ремонту не подлежит – меняют трансформатор.
Если обнаружены неисправные диоды, устанавливают новые. Одновременно меняют и конденсатор: если в нем высыхает электролит, диоды перегружаются, сгорают.
Под увеличительным стеклом осматривают плату. Ликвидируют обнаруженные трещины, нарушенные контакты. Если все принятые меры не помогли, обращаются в мастерскую.
Особенности литиевых батарей
Li-ion АКБ являются очень неприхотливыми в эксплуатации. При бережном обращении они прослужат около 3-4 лет. Однако стоит ориентироваться на то, что даже если аккумуляторы не используются, они медленно умирают. Поэтому запасаться аккумуляторами к устройству впрок не совсем резонно. 2 года – это нормальное время от момента производства. Если прошло больше, то это могут быть уже вышедшие из строя батареи.
Интересно. Самый распространенный размер банки 18650 в среднем имеет ёмкость в 3500 мАч. Нормальная цена для такой батареи – 3-4 доллара. Поэтому производители, обещающие за 3 доллара Power bank объемом 10000 мАч, мягко говоря, обманывают. Хорошо, если там будет хотя бы 3000 мАч.
Зарядное устройство для литиевых аккумуляторных батареек 18650 своими руками
Аккумуляторы играют важную роль в любом механизме, работающим не от сети. Перезаряжаемые аккумуляторные батареи стоят довольно дорого, из-за того, что вместе с ними нужно приобретать зарядное устройство. В аккумуляторных батареях используются разные комбинации проводниковых материалов и электролитов – свинцово-кислотные, никель-кадмиевые (NiCd), никель-металлгидридные (NiMH), литий-ионные (Li-ion), литий-ионполимерные (Li-Po).
Я использую литий-ионные аккумуляторы в своих проектах, поэтому решил сделать зарядку для литиевых аккумуляторов 18650 своими руками, а не покупать дорогое, так что приступим.
Как сделать зарядное устройство для литиевого аккумулятора своими руками
Рассмотрим одну из самых простых схем зарядного устройства для литий-ионных аккумуляторов. Самодельная схема зарядки реализована на микросхеме, которая выступает как стабилитрон и контроллер заряда, и транзисторе. База транзистора соединяется с управляющим электродом микросхемы. Литиевые батареи не любят перенапряжения, поэтому на выходе обязательно нужно выставить рекомендуемое напряжение в 4.2 В. Достичь этого можно с помощью регулировки микросхемы сопротивлениями R3 R4, которые имеют значения 3кОм и 2.2 кОм, соответственно. Подключаются они к первой ножке микросхемы. Регулировка задаётся единожды, и напряжение остаётся постоянным.
Чтобы можно было подстроить напряжение на выходе на месте резистора R, устанавливают потенциометр. Производить подстройку нужно без нагрузки, то есть без самого аккумулятора. С его помощью можно точно подстроить напряжение на выходе, равное 4,2 В. Потом вместо потенциометра можно поставить резистор полученного номинала.
Резистор R4 используется, чтобы открывать базу транзистора. Номинал этого сопротивления – 0,22 кОм. Когда аккумулятор будет заряжаться, его напряжение будет расти. От этого электрод управления на транзисторе будет повышать сопротивление эмиттер-коллектора. Это, в свою очередь, будет понижать ток, идущий на аккумулятор.
Ещё нужно отрегулировать ток зарядки. Для этого используют сопротивления R1. Без этого резистора не загорится светодиод, он отвечает за индикацию процесса зарядки. В зависимости от необходимого тока, подбирают резистор номиналом от 3 до 8 Ом.
Как заряжать аккумулятор, правила
Литий-ионные аккумуляторы похожи на людей тем, что они не ведут себя одинаково и работают лучше всего при температурах, которые не являются ни слишком жаркими, ни холодными.
Эти батареи работают лучше при высоких температурах, чем при низких, так как тепло снижает внутреннее сопротивление и ускоряет химическую реакцию внутри батареи. Побочным эффектом этого процесса является то, что он создает нагрузку на батарею, что может привести к сокращению срока службы в жарких условиях в течение продолжительных периодов.
С другой стороны, низкие температуры увеличивают внутреннее сопротивление, что увеличивает нагрузку на аккумулятор и сокращает его емкость. Батареи, которые обеспечивают 100% -ную емкость при 27 ° C, обычно уменьшаются на 50% при -18 ° C и так далее.
Li ion аккумуляторы как правильно заряжать?
Не разряжать полностью
Несоблюдение этих советов и инструкций может привести к повреждению аккумулятора до такой степени, что он станет непригодным для использования. Вы также можете поставить под угрозу свою безопасность и безопасность других людей, если батарея не используется должным образом. В сочетании с несовпадающим зарядным устройством может произойти перегрев или перезарядка, и существует риск возгорания.
Полная разрядка производится не чаще раза в 3 месяца
Как правильно заряжать литий ионные аккумуляторы?
Зарядка ионно-литиевых батарей очень отличается от зарядки никель-кадмиевых или никель-металлогидридных батарей.
Различия заключаются в том, что литий-ионные аккумуляторы имеют более высокое напряжение на элемент. Они также требуют гораздо более жестких допусков на напряжение при обнаружении полной зарядки, а после полной зарядки они не допускают или требуют подзарядки
Особенно важно иметь возможность точно определять состояние полной зарядки, поскольку литий-ионные аккумуляторы не допускают перезарядки
Хранение с небольшим зарядом
Большинство литий-ионных аккумуляторов, ориентированных на потребителя, заряжаются до напряжения 4,2 В на элемент, и это допускает отклонение около ± 50 мВ на элемент. Зарядка сверх этого вызывает напряжение в элементе и приводит к окислению, что сокращает срок службы и производительность. Это также может вызвать проблемы с безопасностью.
Заряжать только оригинальной зарядкой
Зарядку литий-ионных аккумуляторов можно разделить на два основных этапа:
- Заряд постоянного тока: на первой стадии зарядки литий-ионного аккумулятора или элемента тока заряда контролируется. Как правило, это составляет от 0,5 до 1,0 С. (Примечание: для батареи емкостью 2000 мАч скорость зарядки будет равна 2000 мА для скорости зарядки С). Для потребительских элементов LCO и батарей рекомендуется скорость зарядки не более 0,8 ° C.На этом этапе напряжение на ионно-литиевом элементе увеличивается для заряда постоянного тока. Время зарядки может быть около часа для этой стадии.
- Заряд насыщения: Через некоторое время напряжение достигает пика в 4,2 В для элемента LCO. В этот момент элемент или батарея должны войти во вторую стадию зарядки, известную как заряд насыщения. Поддерживается постоянное напряжение 4,2 В, и ток будет постоянно падать. Конец цикла зарядки достигается, когда ток падает примерно до 10% от номинального тока. Время зарядки может быть около двух часов для этой стадии в зависимости от типа элемента и производителя и т. Д.
Эффективность заряда, то есть величина заряда, удерживаемого батареей или элементом, относительно количества заряда, поступающего в элемент, является высокой. Эффективность зарядки составляет от 95 до 99%. Это отражает относительно низкие уровни повышения температуры клеток.
Не перегревать аккумулятор при зарядке
Есть моменты, когда вы не можете использовать аккумулятор в течение длительного периода времени. Вот советы по поддержанию максимальной емкости батареи для длительного хранения.
Виды зарядных устройств
Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.
Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:
- никель-кадмиевые (NiCd);
- никель-металл-гидридные (NiMH);
- литий-ионные (LiIon).
Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:
- индикацию;
- быструю зарядку;
- разный тип защиты.
Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.
Типы применяемых батарей
Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.
Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.
Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.
Схема подключения литиевых аккумуляторов
Установка литиевой батареи решает разные задачи. В случаях, когда нужно иметь токовую нагрузку, измеряемую десятками ампер используют высокотоковые элементы. Это касается ручного инструмента, тяговых батарей для транспортировки. Средние нагрузки лежат на ноутбуках, фотоаппаратах, фонарях.
Рассмотрим высокотоковые аккумуляторы на основе литий-ионных банок с номинальным напряжением 3,7 В. Они могут иметь разные размеры, емкость, но напряжение будет только 3,7. Изготовлены элементы:
- катод из алюминиевой фольги, на которую нанесен мелкодисперсный графит;
- анод из медной подложки, на которую нанесен LiCoO2:
- сепаратор, ячеистый состав пропитан неводным раствором соли Li.
Именно такие комплектующие используют в цилиндрических элементах, аккумулятор называют литий-ионным. Чаще всего схема питания шуруповертов, ноутбуков, фонарей, биноклей изготовлены с применением литиевых аккумуляторов форм-фактора 18650. Элемент имеет в длину 65 мм, диаметр 18 мм. Напряжение рабочее 3,0-4,2 В. Относится в высокотоковым, то есть может отдавать ток силой до 10 С.
Для питания инструмента большей мощности необходимо соединять последовательно несколько банок, по расчету. При этом емкость измеряется по самому слабому элементу.
Для повышения емкости нужно использовать параллельное соединение. Банки, соединенные одинаковыми полюсами суммируют емкость. Если нужно поднять емкость и напряжение, используют комбинирование. Соединяют группы банок параллельно. Потом каждый комплект соединяют последовательно.
Для шуруповертов с рабочим напряжением 12,14,18 В используется последовательная схема литиевого аккумулятора. Зная, что отдельные элементы не должны перезаряжаться выше 4,20 В, разряжаться ниже 2,5 В, требуется обеспечить равномерное напряжение во всех банках и защиту от опасного для них напряжения. Батарея может быть собрана из защищенных аккумуляторов. Тогда на них есть маркировка «protected» («защищенные»). В корпусе имеется плата, отключающая элемент при достижении критичных параметров.
Защищенный цилиндр на 2 мм длиннее стандартного, незащищенного и немного толще, за счет дополнительной обертки. Если используются незащищенные литиевые аккумуляторы, в схему заряда литиевых аккумуляторов устанавливается плата защиты MBS, рассчитанная на максимальную токовую нагрузку, количество банок. Часто там же встроен балансир.
Усовершенствование зарядного устройства для Li-ion аккумуляторов
Зарядное устройство для кислотно-свинцовых или никель-кадмиевых аккумуляторов можно переделать под литий-ионные батареи. Они заряжаются напряжением 4,20 В с отклонением не более 0,05 В.
Недорогое зарядное устройство состоит из трансформатора, диодного моста, тиристора и схемы управления. Из всей схемы оставляют трансформатор с диодным мостом, остальное выпаивают. Добавляют конденсатор на 35 В емкостью 1000 мкФ. Можно взять больше, но это увеличивает габариты. Остался выпрямитель, к которому следует добавить зарядное устройство.
Простой способ реализуют с помощью микросхемы LM317, которой следует добавить режим стабилизации тока. Это достигается монтажом резистора. Его номинал подсчитывают по формуле R=1,25/I. Количество ампер для Li-ion элементов – от 0,2 до 1, одно из значений подставляют в формулу.
Схемы балансиров для литиевых аккумуляторов
В чем заключается балансировка при сборке батареи последовательно? Когда соединение банок идет противоположными полюсами, напряжение суммируется. Ток протекает одинаковый. По разным причинам разница в емкости может немного отличаться. Но если не поставить преграду, самая малая банка переполнится, то есть перезарядится. Это плохо. При работе ток отбирается в равных количествах. Банка, у которой емкость немного ниже, разрядится настолько, что может выйти из строя, пока другие элементы сборки отдают энергию до нормы.
Балансир представляет схему, которая создает препятствия для прохождения тока в заряженную батарею, направляя ее через дополнительные сопротивления, резисторы. Балансир включает стабилитрон TL431A и транзистор односторонней прямой проводимости BDI 40
Отличные балансиры включены в схему зарядных устройств для литиевых аккумуляторов, которыми широко пользуются. Их маркировка Turnigy Accucel-6 50W 6A и iMAX B6.
Перед вами простая и понятная схема балансировки литиевых аккумуляторов, которую можно сделать самостоятельно.
Как зарядить литиевый аккумулятор 12 вольт
Каждый литиевый аккумулятор представляет герметичное изделие цилиндрической, призматической формы, для Li-pol в мягкой упаковке. Все они имеют напряжение 3,6- 4,2 В и разную емкость, измеряемую в мА/ч. Если собрать последовательно 3 банки получится батарея с напряжением на клеммах 10,8 — 12,6 В. Емкость при последовательной зарядке, измеряется по самому слабому литиевому аккумулятору в связке.
Как правильно заряжать литиевый аккумулятор 18650 или Pol на 12 вольт, нужно знать. Для возвращения прибору емкости необходимо использовать ЗУ с контроллером
Важно иметь в сборке РСМ для каждой банки, защиту от недо- и перезаряда. Другая схема незащищенных литиево-ионных аккумуляторов – установка РСВ – управляющей платы, лучше с балансирами, для равномерной зарядки банок
На зарядном устройстве необходимо задать напряжение, под которым работает батарея, 12,6 В. На приборной доске устанавливается количество банок и ток зарядки, равный 0,2- 0,5 С.
Как заряжать, предлагаем посмотреть видео, способ зарядки для 2, 3 литиевых аккумуляторов 18650, соединенных последовательно. Используется бюджетное зарядное устройство.
Варианты зарядки литий-ионных литиево-полимерных аккумуляторов:
- Зарядное устройство приобретаемое в комплекте с прибором.
- Использовать разъем USB от электронной техники – компьютера. Здесь можно получить ток 0,5 А, зарядка будет долгой.
- От прикуривателя, купив переходник с набором портов. Выбрать тот, что соответствует параметрам батареи на 12 В.
- Универсальное зарядное устройство «лягушка» с доком для установки гаджета. Как заряжать? Есть панель индикации заряда.
Специалисты советуют использовать для зарядки литиевых аккумуляторов штатное зарядное, остальные – только в форс-мажорных обстоятельствах. Однако, как зарядить литиевый аккумулятор без штатного зарядного устройства, нужно знать.
Шаг 6: Сборка, часть 1: прорезаем отверстия в корпусе
Для того, чтобы правильно уместить все электрокомпоненты в корпусе, в нем нужно прорезать отверстия:
- Лезвием ножа отметьте на корпусе границы батарейного отсека (рис.1).
- Горячим ножом прорежьте отверстие по сделанным меткам (рис.2 и 3).
- После прорезания отверстия, корпус должен выглядеть как на рис.4.
- Отметьте место, где будет находиться USB-разъем модуля TP4056 (рис.5 и 6).
- Горячим ножом прорежьте в корпусе отверстие для USB-разъема (рис. 7).
- Отметьте места на корпусе, где будут находиться диоды модуля TP4056 (рис. 8 и 9).
- Горячим ножом прорежьте отверстия под диоды (рис. 10).
- Таким же образом сделайте отверстия под разъем питания и выключатель (рис.11 и 12)
Контроллер заряда Li-ion аккумулятора своими руками
Контроллер — электронная плата которая по характеристикам поддерживает рабочее напряжение и ток разряда. То есть напряжение контроллера должно отвечать характеристике прибора. Токовая нагрузка подбирается в 2 раза ниже предельной. Значит, для 18650 ток должен быть 12-15 А, для 26650 – 30-40 А.
Под контроллером заряда-разряда понимают схему защиты от слишком глубокого разряда, он же препятствует перезаряду банок выше 4,2 В. Но это только защита. Настоящий контроллер установлен в ЗУ, рассчитан на зарядку в 2 этапа с последующим отключением аккумулятора. Зарядное устройство это не блок питания. Назначение этого инструмента стабилизировать ток на первом этапе процесса, при этом выходное напряжение зависит от тока нагрузки.
В конструкции предусмотрены резисторы для регулирования выходного напряжения, индикации окончания заряда, порога ограничения выходного тока. Микросхема LM2596 выступает в виде контроллера ШИМ, компаратор LM358 поддерживает параметры тока, управляет индикацией. Стабилизатор 78L05 питает компаратор и поддерживает напряжение.
Для того, чтобы отключить аккумулятор именно в момент полного набора заряда, необходимо доработать схему. Такая доработка обусловит отключение зарядки при достижении полного заряда.
Защитная плата MBS отключит аккумулятор при достижении полного заряда. Но она срабатывает с некоторым опозданием. Поэтому батарея может получить небольшой перезаряд, сокращающий срок службы дорогого прибора.
Источник